Analyse in meer variabelen, WISB212
 Tentamen

Family name:
Given name:
Student number:

Please:

- Switch off your mobile phone and put it into your bag.
- Write with a blue or black pen, not with a green or red one, nor with a pencil.
- Write your name on each sheet.
- Hand in this sheet, as well.
- Hand in only one solution to each problem.

The examination time is 180 minutes.
You are not allowed to use books, calculators, or lecture notes, but you may use 1 sheet of handwritten personal notes (A4, both sides).

You may use the following without proof:

- the theorems that were proved in the lecture or in the book, unless otherwise stated
- The composition of two smooth maps is smooth.
- smoothness of a map that is given by an "explicit formula" (if the map is indeed smooth)
- a formula for the derivative of a multilinear map
- If two maps $f: U \rightarrow V$ and $g: U \rightarrow W$ are differentiable at $x \in U$ then $(f, g): U \rightarrow V \times W$ is differentiable at x.
- a formula for $D(f, g)(x)$

Prove every other statement you make. Justify your calculations. Check the hypotheses of the theorems you are using.

If you are not able to solve one part of a problem, try to solve the other parts.
You may write in Dutch.
31 points will yield a passing grade 6 , and 66 points a grade 10 .
Good luck!

1	2	3	4	5	6	7	8	9	\sum
$/ 5$	$/ 6$	$/ 9$	$/ 7$	$/ 5$	$/ 4$	$/ 12$	$/ 4$	$/ 19$	$/ 71$

We denote by $\mathbb{R}^{n_{1} \times n_{2}}$ the space of real $n_{1} \times n_{2}$-matrices.
Problem 1 (Leibniz Rule, 5 pt). Let $U \subseteq \mathbb{R}^{m}$ be an open subset, $x_{0} \in U$, and $f: U \rightarrow \mathbb{R}^{n_{1} \times n_{2}}$ and $g: U \rightarrow \mathbb{R}^{n_{2} \times n_{3}}$ be maps that are differentiable at x_{0}. Prove that the map

$$
f g: U \rightarrow \mathbb{R}^{n_{1} \times n_{3}}
$$

is differentiable at x_{0} and compute its derivative at this point. Here $(f g)(x):=f(x) g(x)$ is the product of the matrices $f(x)$ and $g(x)$, for every $x \in U$.

Problem 2 (root of a matrix, 6 pt). Let $n, k \in \mathbb{N}$. We denote by $\mathbf{1} \in \mathbb{R}^{n \times n}$ the identity matrix. Prove that there exist open neighbourhoods U and $V \subseteq \mathbb{R}^{n \times n}$ of $\mathbf{1}$ with the following properties. For every $A \in U$ there exists a unique solution $B=B_{A} \in V$ of the equation

$$
B^{k}=A .
$$

Furthermore, the map $A \mapsto B_{A}$ is smooth.

Problem 3 (curve given as level set, 9 pt). (i) Draw the set

$$
M:=\left\{x \in \mathbb{R}^{2} \mid x_{1}^{4}+16 x_{2}^{4}=1\right\}
$$

indicating 8 points that lie on M.
(ii) Prove that M is a smooth submanifold of \mathbb{R}^{2}. Calculate its dimension.
(iii) Calculate the tangent space to M at every point $x \in M$.

Problem 4 (curve given by parametrization, 7 pt). We define

$$
\psi: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \psi(y):=\left(y+y^{5},-y-y^{7}\right)
$$

(i) Draw a picture of the image M of ψ, indicating 3 points that lie on M.
(ii) Show that M is a smooth submanifold of \mathbb{R}^{2}. Calculate its dimension.

Problem 5 (Lagrange multiplier method, 5 pt). Let

$$
\begin{aligned}
& n, p \in \mathbb{N}, U \subseteq \mathbb{R}^{n} \text { open, } F \in C^{1}(U, \mathbb{R}), \quad g \in C^{1}\left(U, \mathbb{R}^{p}\right), \\
& M:=g^{-1}(0), \quad f:=\left.F\right|_{M}, \quad x_{0} \in M \\
& L: U \times \operatorname{Lin}\left(\mathbb{R}^{p}, \mathbb{R}\right) \rightarrow \mathbb{R}, \quad L(x, \lambda):=F(x)-\lambda g(x) .
\end{aligned}
$$

Assume that g is a submersion and there exists $\lambda \in \operatorname{Lin}\left(\mathbb{R}^{p}, \mathbb{R}\right)$ such that $\left(x_{0}, \lambda\right)$ is a critical point of L. Show that x_{0} is a critical point of f.

Problem 6 (two-dimensional integral, 4 pt). Calculate

$$
\int_{-1}^{1}\left(\int_{0}^{1}\left(e^{y \sin x}-e^{-y \sin x}\right) d x\right) d y .
$$

Problem 7 (integral of rotationally invariant function, 12 pt). Let $r_{0}>0$ and $\widetilde{f}:\left[0, r_{0}\right] \rightarrow \mathbb{R}$ be a continuous function. We define

$$
f: \bar{B}_{r_{0}}^{2} \rightarrow \mathbb{R}, \quad f(x):=\widetilde{f}(\|x\|)
$$

Find a formula for $\int_{\bar{B}_{r_{0}}^{2}} f(x) d x$ in terms of \tilde{f}. Justify your computation.
Remark: This problem was a corollary in the lecture. You are asked to prove this corollary here.

Problem 8 (integral over ball, 4 pt). Calculate the integral

$$
\int_{B^{2}}\left(D_{1} X^{2}-D_{2} X^{1}\right)(x) d x
$$

for

$$
X(x):=\arctan \left(\|x\|^{2}\right)\binom{x_{2}}{-x_{1}} .
$$

Problem 9 (Riemann-integrable function, 19 pt). Let $n \in \mathbb{N}$. Does there exist a Riemann integrable function $f:[0,1]^{n} \rightarrow \mathbb{R}$ such that for every open subset $\emptyset \neq U \subseteq(0,1)^{n}$ the set

$$
\{x \in U \mid f \text { is discontinuous at } x\}
$$

is uncountable?
Hint: First try to find an f for which the above set is nonempty for every U.
Remark: In this problem you may use any exercise from the assignments (and any theorem from the lecture and the book by Duistermaat and Kolk).

