## EERSTE DEELTENTAMEN WISB 212

## Analyse in Meer Variabelen

## 18-04-2006 14-17 uur

- Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzijden.
- De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien het u niet lukt een bepaald onderdeel te maken en ga gewoon door.
- Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine NIET worden gebruikt.
- Het eerste vraagstuk telt voor $60 \%$ van de uitslag en het tweede voor $40 \%$.

Exercise 0.1 (Family of cubic curves). Define the monic cubic polynomial function

$$
p: \mathbf{R} \rightarrow \mathbf{R} \quad \text { by } \quad p(x)=x^{3}-3 x+2 .
$$

(i) Prove that the extrema of $p$ are a local maximum of value 4 occurring at -1 and a local minimum 0 at 1 . Determine the zeros of $p$ and decompose $p$ into a product of linear factors.


Next introduce the cubic polynomial function

$$
g: \mathbf{R}^{3} \rightarrow \mathbf{R} \quad \text { by } \quad g(x)=p\left(x_{1}\right)-x_{2}^{2}-x_{3} \quad \text { and the set } \quad V=\left\{x \in \mathbf{R}^{3} \mid g(x)=0\right\} .
$$


(ii) Show that $V$ is a $C^{\infty}$ submanifold in $\mathbf{R}^{3}$ of dimension 2 by representing it as the graph of a $C^{\infty}$ function.
(iii) Verify again the claim about $V$ as in part (ii), but now by considering $D g(x)$, for all $x \in V$. Further, prove that $(-1,0,4)$ and $(1,0,0)$ are the only points of $V$ at which the tangent plane of $V$ is given by the linear subspace $\mathbf{R}^{2} \times\{0\}$ of $\mathbf{R}^{3}$.

For every $c \in \mathbf{R}$, define the function
$g_{c}: \mathbf{R}^{2} \rightarrow \mathbf{R} \quad$ by $\quad g_{c}\left(x_{1}, x_{2}\right)=g\left(x_{1}, x_{2}, c\right) \quad$ and the set $\quad V_{c}=\left\{x \in \mathbf{R}^{2} \mid g_{c}(x)=0\right\}$.

(iv) For every $c \in \mathbf{R} \backslash\{0,4\}$, demonstrate that $V_{c}$ is a $C^{\infty}$ submanifold in $\mathbf{R}^{2}$ of dimension 1. Prove that $V_{0}$ is a $C^{\infty}$ submanifold in $\mathbf{R}^{2}$ of dimension 1 in all of its points with the possible exception of ( 1,0 ). Furthermore, using part (i) show that $V_{4}$ is the disjoint union of a point (which?) and a $C^{\infty}$ submanifold in $\mathbf{R}^{2}$ of dimension 1.
(v) Set $I=\left[-2, \infty\left[\subset \mathbf{R}\right.\right.$ and prove by means of part (i) that $V_{0} \subset I \times \mathbf{R}$. Next, use this fact to write $V_{0}$ as the union of the graphs $G_{+}$and $G_{-}$of two distinct functions defined on $I$ that are $C^{\infty}$ on the interior of $I$. Furthermore, derive that $(1,0) \in V_{0}$ is a point where $G_{+}$and $G_{-}$intersect and that $\frac{\pi}{3}$ is the smallest angle between the tangent lines at $(1,0)$ of $G_{+}$and $G_{-}$, respectively.
(vi) From the previous part it follows that every $x \in V_{0}$ satisfies $x_{1} \geq-2$; in this case, therefore, one may write $x_{1}=t^{2}-2$ with $t \in \mathbf{R}$. Deduce $V_{0}=\operatorname{im} \phi$, where

$$
\phi: \mathbf{R} \rightarrow \mathbf{R}^{2} \quad \text { is given by } \quad \phi(t)=\left(t^{2}-2, t^{3}-3 t\right) .
$$

Verify that $\phi$ is an embedding on $\mathbf{R} \backslash\{ \pm \sqrt{3}\}$.


Finally, suppose that $p: \mathbf{R} \rightarrow \mathbf{R}$ is an arbitrary monic cubic polynomial with real coefficients and consider $C=\left\{x \in \mathbf{R}^{2} \mid p\left(x_{1}\right)=x_{2}^{2}\right\}$.
(vii) Show that $C$ possesses a singular point only if $p$ has a root at least of multiplicity two. Describe the geometry of $C$ if $p$ has a root of multiplicity three.
Background. Families of curves in $\mathbf{R}^{2}$ of the type studied above occur in number theory and in the theory of differential equations.

Exercise 0.2 (Primal and dual problem in the sense of optimization theory). Suppose $C \in \operatorname{End}\left(\mathbf{R}^{p}\right)$ to be symmetric and positive definite; that is, $\langle C y, y\rangle=\langle y, C y\rangle$ and $\langle y, C y\rangle \geq 0$ for all $y \in \mathbf{R}^{p}$, with equality only if $y=0$. Furthermore, let $n \leq p$ and suppose $A \in \operatorname{Lin}\left(\mathbf{R}^{n}, \mathbf{R}^{p}\right)$ to be injective.
(i) Prove that $C \in \operatorname{Aut}\left(\mathbf{R}^{p}\right)$ and that $A^{t} C A \in \operatorname{End}\left(\mathbf{R}^{n}\right)$ is symmetric and positive definite, and therefore satisfies $A^{t} C A \in \operatorname{Aut}\left(\mathbf{R}^{n}\right)$. (Recall that $A^{t} \in \operatorname{Lin}\left(\mathbf{R}^{p}, \mathbf{R}^{n}\right)$ is defined by $\left\langle A^{t} y, x\right\rangle=$ $\langle y, A x\rangle$, for all $y \in \mathbf{R}^{p}$ and $x \in \mathbf{R}^{n}$.)

Let $0 \neq a \in \mathbf{R}^{n}$ be fixed and define the quadratic function

$$
P: \mathbf{R}^{n} \rightarrow \mathbf{R} \quad \text { by } \quad P(x)=\frac{1}{2}\left\langle A^{t} C A x, x\right\rangle-\langle a, x\rangle .
$$

(ii) For $x \in \mathbf{R}^{n}$, show by means of part (i) that $D P(x)=0$ if and only if $x$ satisfies the linear equation $A^{t} C A x=a$ and that such an $x$ is unique. Conclude that $P$ attains the value $p:=$ $-\frac{1}{2}\left\langle a,\left(A^{t} C A\right)^{-1} a\right\rangle$ at its only critical point.

In the sequel it may be used without proof that $\min _{x \in \mathbf{R}^{n}} P(x)=p$. (This fact can be proved using compactness and consideration of the asymptotic behavior of $P(x)$ as $\|x\| \rightarrow \infty$.)

Now we come to the main issue of the exercise, namely, the study of the quadratic function

$$
Q: \mathbf{R}^{p} \rightarrow \mathbf{R} \quad \text { given by } \quad Q(y)=\frac{1}{2}\left\langle C^{-1} y, y\right\rangle, \quad \text { under the constraint } \quad A^{t} y=a .
$$

(iii) Demonstrate that, for all $y \in V:=\left\{y \in \mathbf{R}^{p} \mid A^{t} y=a\right\}$ and $x \in \mathbf{R}^{n}$, we have the following identity, in which an uncoupled expression occurs at the left-hand side,

$$
Q(y)+P(x)=\frac{1}{2}\left\langle C\left(C^{-1} y-A x\right), C^{-1} y-A x\right\rangle
$$

Deduce, for $y \in V$ and $x \in \mathbf{R}^{n}$, that we have $Q(y) \geq-P(x)$, with equality if and only if $y=C A x$. Using part (ii), show, for all $y \in V$,

$$
Q(y) \geq-p=\max _{x \in \mathbf{R}^{n}}-P(x), \quad \text { and conclude } \quad \min _{y \in V} Q(y)=\max _{x \in \mathbf{R}^{n}}-P(x) .
$$

In other words, the constrained minimum of $Q$ equals the unconstrained maximum of $-P$. As an example of a different approach, we now study the preceding problem by introducing the Lagrange function

$$
L: \mathbf{R}^{p} \times \mathbf{R}^{n} \rightarrow \mathbf{R} \quad \text { with } \quad L(y, x)=Q(y)-\left\langle x,\left(A^{t} y-a\right)\right\rangle .
$$

(iv) Using $L$, determine the points $y \in V$ where the extrema of $\left.Q\right|_{V}$ are attained and derive the same results as in part (iii).

Background. The result above is one of the simplest cases of a duality that plays an important role in optimization theory. In this manner, the primal problem of minimizing $Q$ under constraints is replaced by the dual problem of maximizing $P$.

## Solution of Exercise 0.1

(i) $p^{\prime}(x)=3\left(x^{2}-1\right)=0$ implies $x= \pm 1$; with corresponding values $p(-1)=4$ and $p^{\prime \prime}(-1)=$ -6 , hence a local maximum; and $p(1)=0$ and $p^{\prime \prime}(1)=6$, hence a local minimum. Since $\lim _{x \rightarrow \pm \infty} p(x)= \pm \infty$, the extrema are not absolute. In view of $p(1)=p^{\prime}(1)=0$, one may write $p(x)=(x-1)^{2}(x-a)=x^{3}+\cdots-a$ (see Application 3.6.A), which implies $a=-2$; hence the factorization is $p(x)=(x-1)^{2}(x+2)$.
(ii) $g(x)=0$ implies $x_{3}=p\left(x_{1}\right)-x_{2}^{2}$. This leads to $V=\left\{\left(x_{1}, x_{2}, p\left(x_{1}\right)-x_{2}^{2}\right) \in \mathbf{R}^{3} \mid\left(x_{1}, x_{2}\right) \in\right.$ $\left.\mathbf{R}^{2}\right\}$, displaying $V$ as the graph of a $C^{\infty}$ function on $\mathbf{R}^{2}$.
(iii) $D g(x)=\left(p^{\prime}\left(x_{1}\right),-2 x_{2},-1\right)$, and this element in $\operatorname{Mat}(1 \times 3, \mathbf{R})$ is of rank 1 , for all $x \in \mathbf{R}^{3}$; therefore $g$ is submersive on all of $\mathbf{R}^{3}$. The assertion about $V$ now follows from the Submersion Theorem 4.5.2. Furthermore, grad $g(x)$ is perpendicular to $T_{x} V$, for any $x \in V$ (see Example 5.3.5); hence $T_{x} V=\mathbf{R}^{2} \times\{0\}$ if and only if $p^{\prime}\left(x_{1}\right)=0, x_{2}=0$ and $g(x)=0$. But this implies $x_{1}= \pm 1, x_{2}=0$ and $x_{3}=p( \pm 1)$.
(iv) According to the Submersion Theorem 4.5.2, the set $V_{c}$ is a a $C^{\infty}$ submanifold in $\mathbf{R}^{2}$ of dimension 1 in $x \in V_{c}$ if $D g_{c}(x)=\left(p^{\prime}\left(x_{1}\right),-2 x_{2}\right) \neq(0,0)$ and $c=p\left(x_{1}\right)-x_{2}^{2}$. That is, $V_{c}$ possibly does not possess the desired properties at $x$ if

$$
x_{1}= \pm 1, \quad x_{2}=0 \quad \text { and } \quad c \in\{p( \pm 1)\}=\{0,4\}
$$

If $c=0$, and $c=4$, only the point $(1,0) \in V_{0}$, and $(-1,0) \in V_{4}$, respectively, satisfies all these conditions. Actually, the point $(-1,0)$ is an isolated point of $V_{4}$. Indeed, on the basis of part (i) one finds for $x \in V_{4}$ sufficiently close to $(-1,0)$ that $4=p(-1) \geq p\left(x_{1}\right)=x_{2}^{2}+4$. But this implies $x_{2}=0$ and so $x_{1}=-1$.
(v) For $x \in V_{0}$ one has $0 \leq x_{2}^{2}=p\left(x_{1}\right)$, but then part (i) implies $x_{1} \geq-2$. Under the latter assumption, the condition $x_{2}^{2}=p\left(x_{1}\right)=\left(x_{1}-1\right)^{2}\left(x_{1}+2\right)$ on $x$ is equivalent to

$$
x_{2}= \pm\left(x_{1}-1\right) \sqrt{x_{1}+2}=: f_{ \pm}\left(x_{1}\right)
$$

where $f_{ \pm}: I \rightarrow \mathbf{R}$ is a $C^{\infty}$ function on the interior of $I$. Now set $G_{ \pm}=\operatorname{graph} f_{ \pm}$. Since $f_{ \pm}(1)=0$, one sees $(1,0) \in \bigcap_{ \pm} G_{ \pm}$, while $f_{ \pm}$is $C^{\infty}$ near 1 . Furthermore,

$$
D f_{ \pm}\left(x_{1}\right)= \pm\left(\sqrt{x_{1}+2}+\left(x_{1}-1\right) \cdots\right), \quad \text { in particular } \quad \operatorname{graph} D f_{ \pm}(1)=\mathbf{R}(1, \pm \sqrt{3})
$$

Noting that the norms of the two preceding generators of the tangent spaces of $G_{+}$and $G_{-}$at $(1,0)$ are equal to 2 and writing $\alpha$ for the angle between these, one gets

$$
\cos \alpha=\frac{\langle(1, \sqrt{3}),(1,-\sqrt{3})\rangle}{\|(1, \sqrt{3})\|\|(1,-\sqrt{3})\|}=\frac{1-3}{2 \cdot 2}=-\frac{1}{2}, \quad \text { that is } \quad \alpha=\frac{2 \pi}{3} .
$$

It follows that the smallest angle between the tangent lines equals $\pi-\frac{2 \pi}{3}=\frac{\pi}{3}$.
(vi) Writing $x_{1}=t^{2}-2$ for $x \in V_{0}$, one finds on the basis of part (i)

$$
x_{2}^{2}=p\left(x_{1}\right)=\left(x_{1}-1\right)^{2}\left(x_{1}+2\right)=\left(t^{2}-3\right)^{2} t^{2}=\left(t^{3}-3 t\right)^{2}
$$

This implies $V_{0} \subset \operatorname{im} \phi$, whereas the reverse implication is a straightforward calculation. $D \phi(t)=$ $\left(2 t, 3\left(t^{2}-1\right)\right)$ is of rank 1 , for all $t \in \mathbf{R}$; hence $\phi$ is an immersion on $\mathbf{R}$. Further, $\phi(t)=\phi\left(t^{\prime}\right)$, for $t$ and $t^{\prime} \in \mathbf{R}$, leads to $t= \pm t^{\prime}$, hence $t\left(t^{2}-3\right)=0$; therefore $t= \pm \sqrt{3}$ and $t^{\prime}=\mp \sqrt{3}$. If $t \neq \pm \sqrt{3}$ and $x=\phi(t)$, then $x_{1}-1 \neq 0$, which implies that $\phi(t)=x \mapsto \frac{x_{2}}{x_{1}-1}=t$ defines a continuous mapping. This demonstrates that $\phi$ is an embedding on $\mathbf{R} \backslash\{ \pm \sqrt{3}\}$.
(vii) If $x \in C$ is a singular point of $C$, then $p\left(x_{1}\right)=x_{2}^{2}$ and $\left(p^{\prime}\left(x_{1}\right),-2 x_{2}\right)=(0,0)$ imply $x_{2}=0$ and $p\left(x_{1}\right)=p^{\prime}\left(x_{1}\right)=0$; in other words, $p$ must possess a root of multiplicity at least two. Suppose $p\left(x_{1}\right)=\left(x_{1}-c\right)^{3}$, for some $c \in \mathbf{R}$, then the points of $C$ satisfy the equation $\left(x_{1}-c\right)^{3}=x_{2}^{2}$, which is an ordinary cusp as in Example 5.3.8.

## Solution of Exercise 0.2

(i) Suppose that $C y=0$, then $\langle y, C y\rangle=0$, hence $y=0$. Accordingly, $C$ is injective and thus $C \in \operatorname{Aut}\left(\mathbf{R}^{p}\right)$. Next, $\left(A^{t} C A\right)^{t}=A^{t} C^{t} A^{t t}=A^{t} C A$, which proves the symmetry. Further, assume $x \in \mathbf{R}^{n}$ satisfies $A^{t} C A x=0$. Then, in view of $C$ being positive definite and $A$ injective,

$$
\left\langle x, A^{t} C A x\right\rangle=\langle A x, C A x\rangle=0 \quad \Longrightarrow \quad A x=0 \quad \Longrightarrow \quad x=0
$$

Finally, apply the first argument to $A^{t} C A$.
(ii) The first assertion on $D P(x)$ follows from Corollary 2.4.3.(ii), while the uniqueness of $x$ is a consequence of $A^{t} C A \in \operatorname{Aut}\left(\mathbf{R}^{n}\right)$. Furthermore,

$$
P\left(\left(A^{t} C A\right)^{-1} x\right)=\frac{1}{2}\left\langle a,\left(A^{t} C A\right)^{-1} a\right\rangle-\left\langle a,\left(A^{t} C A\right)^{-1} a\right\rangle
$$

(iii) For all $y \in V$ and $x \in \mathbf{R}^{n}$ one obtains, using $A^{t} y=a$ and the positive definiteness of $C$,

$$
\begin{aligned}
& Q(y)+P(x) \\
&=\frac{1}{2}\left\langle C^{-1} y, y\right\rangle+\frac{1}{2}\left\langle A^{t} C A x, x\right\rangle-\langle a, x\rangle \\
&=\frac{1}{2}\left\langle C\left(C^{-1} y\right), C^{-1} y\right\rangle+\frac{1}{2}\langle C A x, A x\rangle-\left\langle A^{t} y, x\right\rangle \\
&=\frac{1}{2}\left\langle C\left(C^{-1} y-A x\right), C^{-1} y-A x\right\rangle+\frac{1}{2}\langle y, A x\rangle+\frac{1}{2}\left\langle C A x, C^{-1} y\right\rangle-\langle y, A x\rangle \\
&=\frac{1}{2}\left\langle C\left(C^{-1} y-A x\right), C^{-1} y-A x\right\rangle \geq 0 .
\end{aligned}
$$

Once more on the basis of $C$ being positive definite, one has equality if and only if $C^{-1} y-A x=$ 0 , in other words, $y=C A x$. In turn, this implies $Q(y) \geq-P(x)$, for all $y \in V$ and $x \in \mathbf{R}^{n}$. In particular, this is the case if $x^{0} \in \mathbf{R}^{n}$ is the unique element satisfying $A^{t} C A x^{0}=a$ (see part (ii)); this implies, for all $y \in V$,

$$
Q(y) \geq-P\left(x^{0}\right)=\max _{x \in \mathbf{R}^{n}}-P(x)=-\min _{x \in \mathbf{R}^{n}} P(x)=-p
$$

Now consider $y^{0}=C A x^{0} \in \mathbf{R}^{p}$. Then $A^{t} y^{0}=A^{t} C A x^{0}=a$, that is, $y^{0} \in V$; and the preceding arguments imply $Q\left(y^{0}\right)=-P\left(x^{0}\right)=-p$. This proves $\min _{y \in V} Q(y)=-p$.
(iv) Applying the method of Lagrange multipliers, one obtains that extrema for $\left.Q\right|_{V}$ occur at points $y \in V$ satisfying

$$
D_{y} L(y, x)=C^{-1} y-A x=0 \quad \Longrightarrow \quad y=C A x \quad \text { and } \quad a=A^{t} y=A^{t} C A x
$$

However, for such $y$ and $x$,

$$
\begin{aligned}
Q(y) & =\frac{1}{2}\left\langle C^{-1} C A x, C A x\right\rangle=\frac{1}{2}\langle A x, C A x\rangle=\frac{1}{2}\left\langle A^{t} C A x, x\right\rangle \\
& =-\frac{1}{2}\left\langle A^{t} C A x, x\right\rangle+\langle a, x\rangle=-P(x)
\end{aligned}
$$

$C^{-1}$ being positive definite implies that $Q$ attains a minimum on $V$; indeed, the graph of the restriction of $Q$ to $V$ is the intersection of an elliptic paraboloid and an affine submanifold (if necessary, use that continuity of the function $Q$ implies that it attains extrema on compact subsets of $V$ ). Therefore $\min _{y \in V} Q(y)=-P(x)$ where $x=\left(A^{t} C A\right)^{-1} a \in \mathbf{R}^{n}$. Finally, use part (ii) to obtain the desired equality.

Background. The method of Lagrange multipliers enables one to obtain the dual quadratic form $P$, given the primal form $Q$ together with its constraint, by explicitly computing the minimal value of $Q$.

