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• Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzij-
den.

• De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van
elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten
daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien
het u niet lukt een bepaald onderdeel te maken en ga gewoon door.

• Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine NIET worden ge-
bruikt.

• Het eerste vraagstuk telt voor 60 % van de uitslag en het tweede voor 40 %.
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Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.
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Exercise 0.1 (Family of cubic curves). Define the monic cubic polynomial function

p : R → R by p(x) = x3 − 3x + 2.

(i) Prove that the extrema of p are a local maximum of value 4 occurring at −1 and a local minimum
0 at 1. Determine the zeros of p and decompose p into a product of linear factors.

Next introduce the cubic polynomial function

g : R3 → R by g(x) = p(x1)− x2
2 − x3 and the set V = {x ∈ R3 | g(x) = 0 }.

(ii) Show that V is a C∞ submanifold in R3 of dimension 2 by representing it as the graph of a C∞

function.

(iii) Verify again the claim about V as in part (ii), but now by considering Dg(x), for all x ∈ V .
Further, prove that (−1, 0, 4) and (1, 0, 0) are the only points of V at which the tangent plane of
V is given by the linear subspace R2 × {0} of R3.
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For every c ∈ R, define the function

gc : R2 → R by gc(x1, x2) = g(x1, x2, c) and the set Vc = {x ∈ R2 | gc(x) = 0 }.

(iv) For every c ∈ R \ {0, 4}, demonstrate that Vc is a C∞ submanifold in R2 of dimension 1. Prove
that V0 is a C∞ submanifold in R2 of dimension 1 in all of its points with the possible exception
of (1, 0). Furthermore, using part (i) show that V4 is the disjoint union of a point (which?) and a
C∞ submanifold in R2 of dimension 1.

(v) Set I = [−2,∞ [ ⊂ R and prove by means of part (i) that V0 ⊂ I ×R. Next, use this fact to
write V0 as the union of the graphs G+ and G− of two distinct functions defined on I that are C∞

on the interior of I . Furthermore, derive that (1, 0) ∈ V0 is a point where G+ and G− intersect
and that π

3 is the smallest angle between the tangent lines at (1, 0) of G+ and G−, respectively.

(vi) From the previous part it follows that every x ∈ V0 satisfies x1 ≥ −2; in this case, therefore, one
may write x1 = t2 − 2 with t ∈ R. Deduce V0 = im φ, where

φ : R → R2 is given by φ(t) = (t2 − 2, t3 − 3t).

Verify that φ is an embedding on R \ {±
√

3}.

Finally, suppose that p : R → R is an arbitrary monic cubic polynomial with real coefficients and
consider C = {x ∈ R2 | p(x1) = x2

2 }.

(vii) Show that C possesses a singular point only if p has a root at least of multiplicity two. Describe
the geometry of C if p has a root of multiplicity three.

Background. Families of curves in R2 of the type studied above occur in number theory and in the
theory of differential equations.
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Exercise 0.2 (Primal and dual problem in the sense of optimization theory). Suppose C ∈ End(Rp)
to be symmetric and positive definite; that is, 〈Cy, y 〉 = 〈 y, Cy 〉 and 〈 y, Cy 〉 ≥ 0 for all y ∈ Rp,
with equality only if y = 0. Furthermore, let n ≤ p and suppose A ∈ Lin(Rn,Rp) to be injective.

(i) Prove that C ∈ Aut(Rp) and that AtCA ∈ End(Rn) is symmetric and positive definite, and
therefore satisfies AtCA ∈ Aut(Rn). (Recall that At ∈ Lin(Rp,Rn) is defined by 〈Aty, x 〉 =
〈 y, Ax 〉, for all y ∈ Rp and x ∈ Rn.)

Let 0 6= a ∈ Rn be fixed and define the quadratic function

P : Rn → R by P (x) =
1
2
〈AtCAx, x 〉 − 〈 a, x 〉.

(ii) For x ∈ Rn, show by means of part (i) that DP (x) = 0 if and only if x satisfies the linear
equation AtCAx = a and that such an x is unique. Conclude that P attains the value p :=
−1

2〈 a, (AtCA)−1a 〉 at its only critical point.

In the sequel it may be used without proof that minx∈Rn P (x) = p. (This fact can be proved using
compactness and consideration of the asymptotic behavior of P (x) as ‖x‖ → ∞.)

Now we come to the main issue of the exercise, namely, the study of the quadratic function

Q : Rp → R given by Q(y) =
1
2
〈C−1y, y 〉, under the constraint Aty = a.

(iii) Demonstrate that, for all y ∈ V := { y ∈ Rp | Aty = a } and x ∈ Rn, we have the following
identity, in which an uncoupled expression occurs at the left-hand side,

Q(y) + P (x) =
1
2
〈C(C−1y −Ax), C−1y −Ax 〉.

Deduce, for y ∈ V and x ∈ Rn, that we have Q(y) ≥ −P (x), with equality if and only if
y = CAx. Using part (ii), show, for all y ∈ V ,

Q(y) ≥ −p = max
x∈Rn

−P (x), and conclude min
y∈V

Q(y) = max
x∈Rn

−P (x).

In other words, the constrained minimum of Q equals the unconstrained maximum of −P . As an
example of a different approach, we now study the preceding problem by introducing the Lagrange
function

L : Rp ×Rn → R with L(y, x) = Q(y)− 〈x, (Aty − a)〉.

(iv) Using L, determine the points y ∈ V where the extrema of Q|V are attained and derive the same
results as in part (iii).

Background. The result above is one of the simplest cases of a duality that plays an important role in
optimization theory. In this manner, the primal problem of minimizing Q under constraints is replaced
by the dual problem of maximizing P .
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Solution of Exercise 0.1

(i) p′(x) = 3(x2 − 1) = 0 implies x = ±1; with corresponding values p(−1) = 4 and p′′(−1) =
−6, hence a local maximum; and p(1) = 0 and p′′(1) = 6, hence a local minimum. Since
limx→±∞ p(x) = ±∞, the extrema are not absolute. In view of p(1) = p′(1) = 0, one may
write p(x) = (x − 1)2(x − a) = x3 + · · · − a (see Application 3.6.A), which implies a = −2;
hence the factorization is p(x) = (x− 1)2(x + 2).

(ii) g(x) = 0 implies x3 = p(x1)− x2
2. This leads to V = { (x1, x2, p(x1)− x2

2) ∈ R3 | (x1, x2) ∈
R2 }, displaying V as the graph of a C∞ function on R2.

(iii) Dg(x) = (p′(x1),−2x2,−1), and this element in Mat(1×3,R) is of rank 1, for all x ∈ R3; the-
refore g is submersive on all of R3. The assertion about V now follows from the Submersion The-
orem 4.5.2. Furthermore, grad g(x) is perpendicular to TxV , for any x ∈ V (see Example 5.3.5);
hence TxV = R2 × {0} if and only if p′(x1) = 0, x2 = 0 and g(x) = 0. But this implies
x1 = ±1, x2 = 0 and x3 = p(±1).

(iv) According to the Submersion Theorem 4.5.2, the set Vc is a a C∞ submanifold in R2 of dimen-
sion 1 in x ∈ Vc if Dgc(x) = (p′(x1),−2x2) 6= (0, 0) and c = p(x1) − x2

2. That is, Vc possibly
does not possess the desired properties at x if

x1 = ±1, x2 = 0 and c ∈ { p(±1) } = {0, 4}.

If c = 0, and c = 4, only the point (1, 0) ∈ V0, and (−1, 0) ∈ V4, respectively, satisfies all these
conditions. Actually, the point (−1, 0) is an isolated point of V4. Indeed, on the basis of part (i)
one finds for x ∈ V4 sufficiently close to (−1, 0) that 4 = p(−1) ≥ p(x1) = x2

2 + 4. But this
implies x2 = 0 and so x1 = −1.

(v) For x ∈ V0 one has 0 ≤ x2
2 = p(x1), but then part (i) implies x1 ≥ −2. Under the latter

assumption, the condition x2
2 = p(x1) = (x1 − 1)2(x1 + 2) on x is equivalent to

x2 = ±(x1 − 1)
√

x1 + 2 =: f±(x1),

where f± : I → R is a C∞ function on the interior of I . Now set G± = graph f±. Since
f±(1) = 0, one sees (1, 0) ∈

⋂
±G±, while f± is C∞ near 1. Furthermore,

Df±(x1) = ±(
√

x1 + 2 + (x1 − 1) · · · ), in particular graph Df±(1) = R(1,±
√

3).

Noting that the norms of the two preceding generators of the tangent spaces of G+ and G− at
(1,0) are equal to 2 and writing α for the angle between these, one gets

cos α =
〈 (1,

√
3), (1,−

√
3) 〉

‖(1,
√

3)‖ ‖(1,−
√

3)‖
=

1− 3
2 · 2

= −1
2
, that is α =

2π

3
.

It follows that the smallest angle between the tangent lines equals π − 2π
3 = π

3 .

(vi) Writing x1 = t2 − 2 for x ∈ V0, one finds on the basis of part (i)

x2
2 = p(x1) = (x1 − 1)2(x1 + 2) = (t2 − 3)2 t2 = (t3 − 3t)2.

This implies V0 ⊂ im φ, whereas the reverse implication is a straightforward calculation. Dφ(t) =
(2t, 3(t2 − 1)) is of rank 1, for all t ∈ R; hence φ is an immersion on R. Further, φ(t) = φ(t′),
for t and t′ ∈ R, leads to t = ±t′, hence t(t2 − 3) = 0; therefore t = ±

√
3 and t′ = ∓

√
3. If

t 6= ±
√

3 and x = φ(t), then x1 − 1 6= 0, which implies that φ(t) = x 7→ x2
x1−1 = t defines a

continuous mapping. This demonstrates that φ is an embedding on R \ {±
√

3}.
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(vii) If x ∈ C is a singular point of C, then p(x1) = x2
2 and (p′(x1),−2x2) = (0, 0) imply x2 = 0 and

p(x1) = p′(x1) = 0; in other words, p must possess a root of multiplicity at least two. Suppose
p(x1) = (x1 − c)3, for some c ∈ R, then the points of C satisfy the equation (x1 − c)3 = x2

2,
which is an ordinary cusp as in Example 5.3.8.

Solution of Exercise 0.2

(i) Suppose that Cy = 0, then 〈 y, Cy 〉 = 0, hence y = 0. Accordingly, C is injective and thus
C ∈ Aut(Rp). Next, (AtCA)t = AtCtAtt = AtCA, which proves the symmetry. Further,
assume x ∈ Rn satisfies AtCAx = 0. Then, in view of C being positive definite and A injective,

〈x, AtCAx 〉 = 〈Ax, CAx 〉 = 0 =⇒ Ax = 0 =⇒ x = 0.

Finally, apply the first argument to AtCA.

(ii) The first assertion on DP (x) follows from Corollary 2.4.3.(ii), while the uniqueness of x is a
consequence of AtCA ∈ Aut(Rn). Furthermore,

P ((AtCA)−1x) =
1
2
〈 a, (AtCA)−1a 〉 − 〈 a, (AtCA)−1a 〉.

(iii) For all y ∈ V and x ∈ Rn one obtains, using Aty = a and the positive definiteness of C,

Q(y) + P (x)

=
1
2
〈C−1y, y 〉+

1
2
〈AtCAx, x 〉 − 〈 a, x 〉

=
1
2
〈C(C−1y), C−1y 〉+

1
2
〈CAx,Ax 〉 − 〈Aty, x 〉

=
1
2
〈C(C−1y −Ax), C−1y −Ax 〉+

1
2
〈 y, Ax 〉+

1
2
〈CAx,C−1y 〉 − 〈 y, Ax 〉

=
1
2
〈C(C−1y −Ax), C−1y −Ax 〉 ≥ 0.

Once more on the basis of C being positive definite, one has equality if and only if C−1y−Ax =
0, in other words, y = CAx. In turn, this implies Q(y) ≥ −P (x), for all y ∈ V and x ∈ Rn.
In particular, this is the case if x0 ∈ Rn is the unique element satisfying AtCAx0 = a (see part
(ii)); this implies, for all y ∈ V ,

Q(y) ≥ −P (x0) = max
x∈Rn

−P (x) = − min
x∈Rn

P (x) = −p.

Now consider y0 = CAx0 ∈ Rp. Then Aty0 = AtCAx0 = a, that is, y0 ∈ V ; and the preceding
arguments imply Q(y0) = −P (x0) = −p. This proves miny∈V Q(y) = −p.

(iv) Applying the method of Lagrange multipliers, one obtains that extrema for Q|V occur at points
y ∈ V satisfying

DyL(y, x) = C−1y −Ax = 0 =⇒ y = CAx and a = Aty = AtCAx.

However, for such y and x,

Q(y) =
1
2
〈C−1CAx,CAx 〉 =

1
2
〈Ax,CAx 〉 =

1
2
〈AtCAx, x 〉

= −1
2
〈AtCAx, x 〉+ 〈 a, x 〉 = −P (x).
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C−1 being positive definite implies that Q attains a minimum on V ; indeed, the graph of the
restriction of Q to V is the intersection of an elliptic paraboloid and an affine submanifold (if
necessary, use that continuity of the function Q implies that it attains extrema on compact subsets
of V ). Therefore miny∈V Q(y) = −P (x) where x = (AtCA)−1a ∈ Rn. Finally, use part (ii) to
obtain the desired equality.

Background. The method of Lagrange multipliers enables one to obtain the dual quadratic form P ,
given the primal form Q together with its constraint, by explicitly computing the minimal value of Q.
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