Department of Computer Science, Faculty of Science, UU.
Made available in electronic form by the $\mathcal{T}_{\mathcal{B}} \mathcal{C}$ of A -Eskwadraat
In 2005/2006, the course INFOPROB was given by Silja Renooij.

Probabilistic Reasoning (INFOPROB) 6 January 2006

Question 1

Consider a probabilistic network $B=(G, \Gamma)$, where $G=(V(G), A(G))$ is the following acyclic digraph and $\Gamma=\left\{\gamma_{V_{i}} \mid V_{i} \in V(G)\right\}$ is given by:

$$
\begin{array}{ll}
\gamma\left(v_{1}\right)=0.25 & \gamma\left(v_{2}\right)=0.6 \\
\gamma\left(v_{3} \mid v_{1} \wedge v_{2}\right)=0.2 & \gamma\left(v_{4}\right)=0.3 \\
\gamma\left(v_{3} \mid \neg v_{1} \wedge v_{2}\right)=0.1 & \\
\gamma\left(v_{3} \mid v_{1} \wedge \neg v_{2}\right)=0.7 & \gamma\left(v_{5} \mid v_{3} \wedge \neg v_{4}\right)=0.5 \\
\gamma\left(v_{3} \mid \neg v_{1} \wedge \neg v_{2}\right)=0.35 & \gamma\left(v_{5} \mid \neg v_{3} \wedge v_{4}\right)=0.8
\end{array}
$$

a) Assume that the variables V_{3} and V_{4} exhibit a disjunctive interaction with respect to variable V_{5} and that for specifying the assessment function for node V_{5}, the noisy-or gate is used. Complete the assessment function $\gamma_{V_{5}}$ for node V_{5}.
(10 points)
Let Pr be the probability distribution defined by probabilistic network B. Consider the five computation rules of Pearl's data fusion algorithm.
b) Assume that the observation $V_{3}=$ true is entered into probabilistic network B. Illustrate Pearl's algorithm by computing the probability $\operatorname{Pr}^{v_{3}}\left(v_{1}\right)$. Clearly indicate which messages are passed and how they are computed; explicitly mention all assumptions you make.(15 points)

Now use Pearl's algorithm as a "black box": $\operatorname{Pearl}\left(B, \tilde{c}_{E}\right) \rightarrow \operatorname{Pr}^{\tilde{c}_{E}}\left(V_{i}\right)$ taking as input network B and a partial configuration \tilde{c}_{E} of observations and returning for each node the probabilities of all its values, given the observations.
c) Explain how the probability $\operatorname{Pr}^{v_{3}}\left(v_{1} \vee \neg v_{4}\right)$ can be efficiently computed from the network. (10 points)

Question 2

Consider a probabilistic network $B=(G, \Gamma)$, where $G=(V(G), A(G))$ is the following acyclic digraph with >6 loops:

a) Give a loop cutset for graph G that can be found by applying the heuristic Suermondt \mathcal{E} Cooper algorithm.
(10 points)
b) Consider a set $C \subseteq V(G)$. Let G^{\prime} be the graph that results from G by removing all outgoing arcs of all nodes in C, that is, $G^{\prime}=\left(V(G), A^{\prime}(G)\right)$ with $A^{\prime}(G)=A(G) \backslash\left\{\left(V_{i}, V_{j}\right) \mid V_{i} \in C\right\}$. Similarly, let $G^{\prime \prime}$ be a graph that results from G by removing all nodes in C together with their incident arcs, that is, $G^{\prime \prime}=\left(V(G) \backslash C, A^{\prime \prime}(G)\right)$ with $A^{\prime \prime}(G)=A(G) \backslash\left\{\left(V_{i}, V_{j}\right) \mid V_{i} \in\right.$ C or $\left.V_{j} \in C\right\}=A^{\prime}(G) \backslash\left\{\left(V_{i}, V_{j}\right) \mid V_{j} \in C\right\}$.
A well-known property of G^{\prime} is that if G^{\prime} is a singly connected graph then set C is a loop cutset for G. Prove, or give a counter-example for, the following similar statement:
if $G^{\prime \prime}$ is a singly connected graph then set C is a loop cutset for G.
(15 points)
c) Suppose we subject network B to a one-way sensitivity analysis, where we are interested in the probability distribution $\operatorname{Pr}\left(V_{5}\right)$. More specifically, we are interested in the most likely value of variable V_{5} and how this changes upon parameter variation. Given that there are no observations in the network and assuming that all variables in the network can only adopt two values, a one-way sensitivity analysis results in 116 sensitivity functions describing the effect of varying each of the 58 parameter probabilities on each of the two output values of V_{5}.
It is possible to use these sensitivity functions to establish whether or not an observation for one of the variables in the network could change the most likely value of variable V_{5} ? Clearly motivate your answer.

Question 3

Consider modelling the disease tuberculosis, together with its symptoms and the different tests that are used to diagnose the disease, in a probabilistic network. We focus on the variable T, with possible values t and $\neg t$ that describe whether or not a patient has tuberculosis, and two test variables M and B with values m and $\neg m$, and b and $\neg b$, respectively. Variable M models the outcome of a Mantoux test and variable B models the outcome of a bloodtest.
Consider the following two possible probabilistic networks:

a) Clearly explain which of the following statements is or are correct:
A. Network α cannot diagnose the patient, but can only predict the outcome of the two tests M and B for patients for whom we know whether or not they have tuberculosis (T).
B. Network β needs the outcome of both tests B and M to diagnose whether or not a patient has tuberculosis (T).
C. Networks α and β can both predict whether or not a patient has tuberculosis based upon ≤ 0 test-results; both networks can in addition predict the outcome of the two tests M and B for patients for whom we know for sure whether or not they have tuberculosis (T).

Observation: the two networks do not capture the same independence relation: in network α we have for example that $I(\{M\},\{T\},\{B\})$ and $\neg I(\{M\}, \emptyset,\{B\})$, whereas in network β we find that $\neg I(\{M\},\{T\},\{B\})$ and $I(\{M\}, \emptyset,\{B\})$.
Argument: if the test results are somewhat reliable, then, for example, a positive outcome for test M would make a positive outcome for test B more likely.
b) Assume that you agree with Argument, would you then prefer network α or network β ? Explain your answer.

Suppose that we change the network by summarising the two testresults in an additional intermediate variable I in such a way that $\operatorname{Pr}(T M B)$ remains unchanged. This intermediate variable is placed between the desease variable and the two test variables, resulting in two new networks α^{\prime} and β^{\prime}, with $A\left(G_{\alpha^{\prime}}\right)=\{T \rightarrow I, I \rightarrow M, I \rightarrow B\}$ and $A\left(G_{\beta^{\prime}}\right)=\{M \rightarrow I, B \rightarrow I, I \rightarrow T\}$.
c) For your network of preference from part b), are the (in)dependences among the variables T, M and B stated in Observation above still valid in the extended network? If not, would you prefer the simple network, or the extended one? Clearly motivate your answer(s).

Formulas

Pearl in a singly connected graph

Consider a node V in a probabilistic network $B=(G, \Gamma)$. Let $\rho(V)=\left\{A_{1}, \ldots, A_{n}\right\}$ be the set of direct ancestors (parents) of V in G, and let $\sigma(V)=\left\{D_{1}, \ldots, D_{m}\right\}$ be the set of its direct descendants (children). With Pearl's algorithm, node V computes the following parameters:

$$
\begin{aligned}
\pi(V) & =\sum_{c_{\rho(V)}}\left(\gamma\left(V \mid c_{\rho(V)}\right) \cdot \prod_{i=1, \ldots, n} \pi_{V}^{A_{i}}\left(c_{A_{i}}\right)\right) \\
\lambda(V) & =\prod_{j=1, \ldots, m} \lambda_{D_{j}}^{V}(V) \\
\pi_{D_{j}}^{V}(V) & =\alpha \cdot \pi(V) \cdot \prod_{\substack{k=1, \ldots, m \\
k \neq j}} \lambda_{D_{k}}^{V}(V) \\
\lambda_{V}^{A_{i}}\left(A_{i}\right) & =\alpha \cdot \sum_{c_{V}} \lambda\left(c_{V}\right) \cdot \sum_{c_{\rho(V) \backslash\left\{A_{i}\right\}}}\left(\gamma\left(c_{V} \mid c_{\rho(V) \backslash\left\{A_{i}\right\}} \wedge A_{i}\right) \cdot \prod_{\substack{k=1, \ldots, n \\
k \neq i}} \pi_{V}^{A_{k}}\left(c_{A_{k}}\right)\right)
\end{aligned}
$$

