Instituut voor Theoretische Fysica, Universiteit Utrecht

END EXAM STRING THEORY

Thursday, June 26, 2008

- Use different sheets for each exercise.
- Write your name and initials on every sheet handed in.
- The lecture notes "Lectures on String Theory" may be consulted during the test, as well as your own notes.
- Some exercises require calculations. Divide your available time wisely over the exercises.

Problem 1 (Classical open bosonic strings)

Consider the following parametric equations:

$$
\begin{align*}
X^{0} & =3 A \tau, \\
X^{1} & =A \cos (3 \tau) \cos (3 \sigma), \tag{1}\\
X^{2} & =A \sin (\beta \tau) \cos (\gamma \sigma),
\end{align*}
$$

where A is a constant and β and γ are arbitrary positive coefficients.

1. Fix β and γ so that the equations above describe an open string solution, fulfilling also the non-linear constraints $T_{\alpha \beta}=0$ (in all the remaining parts of this exercise, always assume these values of β and γ). Write down the explicit expression of the solution in the form:

$$
X^{\mu}(\tau, \sigma)=X_{L}^{\mu}(\tau-\sigma)+X_{R}^{\mu}(\tau+\sigma)
$$

Which boundary conditions does the solution fulfill in the various spacetime directions?
2. For what values of the modes x^{μ}, p^{μ} and α_{n}^{μ} does the general open string solution reproduce the expressions (1)?
3. Compute the center-of-mass four-momentum P^{μ} and the angular momentum $J^{\mu \nu}$ for the solution under consideration, and show that they are conserved.

Problem 2 (Counting Virasoro descendants)
Let $|\Phi\rangle$ be a primary state which is an eigenstate of the number operator N with an eigenvalue $N_{\Phi}: N|\Phi\rangle=N_{\Phi}|\Phi\rangle$. How many algebraic independent Virasoro descendants one has at a fixed level $N_{\Phi}+n$? Motivate your answer.

Problem 3 (Graviton and dilaton states in covariant quantization)
Examine the closed string states $\zeta_{\mu \nu} \alpha_{-1}^{\mu} \bar{\alpha}_{-1}^{\nu}|p\rangle$ with $\zeta_{\mu \nu}=\zeta_{\nu \mu}$.

1. Show that the Virasoro constraints imply the conditions $p^{2}=0$ and $p_{\mu} \zeta^{\mu \nu}=0$.
2. Exhibit the null states that generate the physical state equivalence $\zeta^{\mu \nu} \sim \zeta^{\mu \nu}+p^{\mu} \epsilon^{\nu}+p^{\nu} \epsilon^{\mu}$, which holds for $p^{2}=0$ and $p_{\mu} \epsilon^{\mu}=0$.
3. Show that there are $(d-2)(d-1) / 2$ independent physical degrees of freedom in $\zeta_{\mu \nu} \alpha_{-1}^{\mu} \bar{\alpha}_{-1}^{\nu}|p\rangle$ for each value of p_{μ} which satisfies $p^{2}=0$. These are the degrees of freedom of a graviton and a scalar particle called dilaton.

Problem 4 (Fermionic string)

By using the equations of motion for fermionic string in the superconformal gauge, show the conservation of the fermionic current

$$
G_{\alpha}=\frac{1}{4} \rho^{\beta} \rho_{\alpha} \psi^{\mu} \partial_{\beta} X_{\mu} .
$$

Problem 5 (Propagator for fermions)
Consider closed fermionic string. Find the propagator for fermions in the NS sector $\left(\tau>\tau^{\prime}\right)$:

$$
\left\langle\psi_{+}^{\mu}(\tau, \sigma), \psi_{+}^{\nu}\left(\tau^{\prime}, \sigma^{\prime}\right)\right\rangle=T\left(\psi_{+}^{\mu}(\tau, \sigma) \psi_{+}^{\nu}\left(\tau^{\prime}, \sigma^{\prime}\right)\right)-: \psi_{+}^{\mu}(\tau, \sigma) \psi_{+}^{\nu}\left(\tau^{\prime}, \sigma^{\prime}\right):,
$$

where T stands for the operation of time ordering.

Problem 6 (Bonus) Spiky strings!
Consider classical bosonic string propagating according to

$$
\begin{aligned}
& X^{0}=t=\tau \\
& \vec{X}=\vec{X}\left(\sigma^{+}\right)+\vec{X}\left(\sigma^{-}\right)
\end{aligned}
$$

Here $\vec{X}=\left\{X^{i}\right\}, i=1, \ldots d$ and

$$
\begin{aligned}
& \vec{X}\left(\sigma^{-}\right)=\frac{\sin \left(m \sigma^{-}\right)}{2 m} \mathbf{e}_{1}+\frac{\cos \left(m \sigma^{-}\right)}{2 m} \mathbf{e}_{2}, \\
& \vec{X}\left(\sigma^{+}\right)=\frac{\sin \left(n \sigma^{+}\right)}{2 n} \mathbf{e}_{1}+\frac{\cos \left(n \sigma^{+}\right)}{2 n} \mathbf{e}_{2},
\end{aligned}
$$

where \mathbf{e}_{1} and \mathbf{e}_{2} are two unit orthogonal vectors and the ratio $\frac{n}{m}$ is an integer.
Questions:

- Show that this configuration satisfies the Virasoro constraints.
- Show that there are points on the string where $\vec{X}^{\prime}=0$. Show that at these points $\dot{\vec{X}}^{2}=1$, i.e. these points move with the speed of light these are spikes.
- Let $m=1$ and $n=k-1$. Show that k is the number of spikes.

