Quantum Field Theory (NS-TP401m) December 1, 2005

Question 1: Scalar field on a circle

Consider the action of a real scalar field in two spacetime dimensions,

$$
\begin{equation*}
S=\int \mathrm{d} x \mathrm{~d} t\left(-\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-\lambda \phi^{4}\right) \tag{1}
\end{equation*}
$$

a) Assume that the spatial component x parametrizes a circle of length $L=2 \pi R$, and decompose the scalar field in terms of a Fourier sum. Indicate the possible values of the momenta.
b) Express the action in terms of these Fourier modes and show that you obtain a quantummechanical model of an infinite tower of harmonic oscillators $\phi_{n}(t)$, where $n=0, \pm 1, \pm 2, \ldots$, with frequencies (masses),

$$
\begin{equation*}
M_{n}^{2}=m^{2}+\frac{n^{2}}{R^{2}} \tag{2}
\end{equation*}
$$

Normalize the ϕ_{n} such that kinetic energy reads $\frac{1}{2}\left(\partial_{t} \phi_{0}\right)^{2}+\sum_{n>0}\left|\partial_{t} \phi_{n}\right|^{2}$.
c) Write down the propagators and vertices in momentum space for this quantum-mechanical model.
d) Draw the Feynman diagram(s) that contribute to the self-energy of ϕ_{0} in the one-loop approximation. In the same approximation, compute the full propagator and the correction to the ϕ_{0}-mass. Use the fact that the propagator,

$$
\begin{equation*}
\Delta(x-y)=\frac{1}{i(2 \pi)^{d}} \int \mathrm{~d}^{d} k \frac{\mathrm{e}^{i k_{\mu}(x-y)^{\mu}}}{k^{2}+M^{2}-i \epsilon} \tag{3}
\end{equation*}
$$

for $d=1$, is given by $\Delta(x-y)=\frac{1}{2 M} \mathrm{e}^{-i M|x-y|}$.
e) Present the separate contributions to the ϕ_{0}-mass from the ϕ_{0}-propagator and from the $\phi_{ \pm|n| \neq 0^{-}}$ propagators (for given $|n|$). Consider now the limits $R \rightarrow 0$ and $R \rightarrow \infty$, assuming that $\lambda^{\prime}=\lambda / L$ is kept constant.
f) Add the various contributions and discuss the result for the ϕ_{0}-mass in the two limits.

Question 2: Coherent states quantization

Consider the path integral in the phase-space representation where the action equals $S[p(t), q(t)]=$ $\int \mathrm{d} t[p \dot{q}-H(p, q)]$. Subsequently choose the complex variable

$$
\begin{equation*}
a=\frac{1}{\sqrt{2 \omega}}(\omega q+i p) \tag{4}
\end{equation*}
$$

We assume $\hbar=1$.
a) Write the action in terms of $a(t)$ and $a^{*}(t)$ and show that, up to boundary terms it is equal to

$$
\begin{equation*}
S\left[a(t), a^{*}(t)\right]=\int \mathrm{d} t\left[i a^{*} \dot{a}-H\left(a^{*}, a\right)\right] \tag{5}
\end{equation*}
$$

Derive the equations of motion for a and a^{*} from Hamilton's principle. Do not worry about the precise boundary values for a and *.
b) Determine $H\left(a^{*}, a\right)$ for the harmonic oscillator (we choose $m=1$ and select the same ω as above),

$$
\begin{equation*}
H=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right) \tag{6}
\end{equation*}
$$

c) Note that this system has only first-order in time derivatives. Determine the momentum conjugate to a and derive the canonical commutation relations for the operators a and a^{*}.
d) View this system as a 'field' theory based on two fields, a and a^{*}. What is the propagator when using the Hamiltonian $H\left(a^{*}, a\right)$ that you derived in question b$)$?.
e) Show that a quantum-mechanical representation for the operators a and a^{*} is given in the "z-representation" by

$$
\begin{equation*}
a^{*}=z, \quad a=\frac{\mathrm{d}}{\mathrm{~d} z} \tag{7}
\end{equation*}
$$

In this representation a and a^{*} act on wavefunctions $\psi(z)$, where z is complex. Hence the wavefunctions are holomorphic.
f) Show that the functions $\psi_{\lambda}(z) \propto \exp (\lambda z)$ are eigenfunctions of the operator a with eigenvalue λ. These are the so-called coherent states. Show that the monomials $\psi_{n}(z) \propto z^{n}$ are eigenfunctions of the occupation number operator $a^{*} a$.
(Remark: In this representation hermitean conjugation and the normalizability of wavefunctions is not so obvious. You may ignore these aspects here.)

Question 3: An auxiliary field

Consider a field theory (in four space-time dimensions) with two real fields, ϕ and A, described by the Lagrangian

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-\lambda \phi^{4}-\frac{1}{2} A^{2}+A\left(\mu^{2}+g \phi^{2}\right) . \tag{8}
\end{equation*}
$$

a) Give the propagators and vertices.
b) Calculate the self-energy diagrams in the tree approximation and give the masses for the physical particles described in this approximation. Give the full propagators in the tree approximation and use these in the next three questions.
c) Calculate the (three) self-energy diagrams for the field ϕ in the one-loop approximation. Give the mass-shift of ϕ in that approximation. (Note: do not try to evaluate the integrals.) For which value of g does the mass shift vanish?
d) Solve the (classical) equations of motion for A and substitute the result into the Lagrangian, which will then depend only on ϕ. Show that this corresponds to integrating out the field A in the path integral.
e) Evaluate now again the mass of the field ϕ in tree approximation and compare the result to the answers to question b) above.
f) Calculate again the self-energy diagrams in the one-loop approximation. Compare the result to the results obtained in question c). Can you now explain the cancellation noted in question c), noted for special values of g ?
g) Bonus question Calculate the mass shift for the field A in the one-loop approximation. What do you conclude?

