
Midterm Exam Trial- “Quantum Matter”
(NS-371B)

April 5, 2012
Duration of the exam: 2 hours

1. Use a separate sheet for every exercise.

2. Write your name and initials in all sheets, on the first sheet also your

address and your student ID number.

3. Write clearly, unreadable work cannot be corrected.

4. You are NOT allowed to use any kind of books or lecture notes. A list with

some useful formulas is given at the end of the exam sheet.

Spin Waves

1. Ferromagnetic materials have excitations called “spin waves” or “magnons”,
corresponding to oscillations in the magnetization direction that (classi-
cally) behave as waves. Their dispersion is

εk = J [3− cos(kxa)− cos(kya)− cos(kza)] , (1)

where J is the so-called “spin stiffness” and a is the lattice constant. The
aim here is to understand how the heat capacity depends on the tempera-
ture.

(a) (1.5) Given the fact that spin waves obey the Planck distribution func-
tion, determine their contribution to the heat capacity at low temper-
atures and in three dimensions. Hint: expand the dispersion for small
kx, ky, kz, determine the internal energy U , and then determine the
heat capacity C. Write the integral in terms of dimensionless vari-
ables and call it I3D.

(b) (1.5) Same as (a), but now in one and two dimensions. Guess the
expression for εk in one and two dimensions, looking at Eq.(1).

(c) (1.0) How is the temperature dependence for spin-waves in d-dimensions?

Phonon dispersion in graphene

2. Carbon-based materials have always attracted a lot of scientific interest.
Recently, in 2004, experimental physicists succeeded in isolating graphene,
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Figure 1: Graphene lattice

a two dimensional layer of carbon atoms, arranged in a regular hexagonal
lattice, see Fig. 1.

Although graphene only consists of carbon atoms, the unit cell contains two
atoms, which we call A and B. These atoms have to be treated indepen-
dently, since the bonds to their nearest neighbours are arranged differently.
In the figure, the graphene lattice is drawn, with atoms of type A drawn as
solid circles and those of type B as open circles. The dashed parallelograms
are the unit cells, which we label by (m,n) (shown on the figure). The
vectors to the nearest neighbours of an A atom are

~δ1 = a(1, 0), ~δ2 =
1
2
a(−1,

√
3), ~δ3 =

1
2
a(−1,−

√
3),

where a is the distance between two neighbouring carbon atoms.

The lattice vectors indicate how the unit cells are arranged. These are given
by

~a1 =
1
2
a(3,

√
3), ~a2 =

1
2
a(3,−

√
3).

The positions of the atoms are expressed conveniently in terms of these
lattice vectors. The positions of the A and B atom of the (m,n)-th unit
cell are given by

~xAm,n = m~a1 + n~a2, ~xBm,n = ~xAm,n + ~δ1.

In this problem, we consider the in-plane phonon modes of graphene. These
modes are characterised by plane waves. In this case, the displacements of
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the atoms are given by

~uAm,n(t) = ~u0A exp(i~k · ~xAm,n − iω t),

~uBm,n(t) = ~u0B exp(i~k · ~xBm,n − iω t),

where ~k is the wave vector, ω is the frequency, and ~u0A and ~u0B are two con-
stant vectors indicating the amplitude and direction of the displacements.

(a) (2.0) Write down the equations of motion for this system. Use M for
the mass of a carbon atom, and K for the spring constant of the bond
between two carbon atoms. Hint: Write first the equations of motion
in terms of the displacements and their derivatives, and then express
xB in terms of xA (and vice versa) using ~δ1, ~δ2, and ~δ3 in the expression
for the displacements. Show that

−M

K
ω2~u0B = ~u0Af(−~k)− 3~u0B

−M

K
ω2~u0A = ~u0Bf(~k)− 3~u0A

with f(~k) = ei
~k·~δ1 + ei

~k·~δ2 + ei
~k·~δ3.

(b) (1.0) Starting from the equations of motion, it is possible to show
(don’t do it) that the dispersion is given by

[ω(~k)]2 =
3K

M



1±

√

|f(~k)|2
9



 .

How many modes are there per unit cell? Why? What is the total
number of in-plane modes in a graphene sample of N atoms?

(c) (1.5) Due to the linear behaviour of the dispersion of the acoustic

modes for low momenta |~k|, this system is described well by the De-

bye model in the low-|~k| limit. Expand the acoustic modes around a
minimum and derive the speed of sound vs.

(d) (1.5) The Debye frequency ωD is the frequency for which
∫ ωD

0
g(ω)dω

equals the total number of modes. Here, g(ω) is the density of states.
Give an expression for the density of states for this system. Subse-
quently, calculate the Debye frequency for the in-plane modes. Give
your answer in units of a/L, where L2 is the area of the system.

Formulas

• Maxwell-Boltzmann distribution: g(ε) ∝ exp(−ε/kBT )
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• Gibbs distribution:

Pi =
exp{β(µNi − Ei)}

Z , Z =
∑

i

exp{β(µNi −Ei)}

• For the different ensembles:

Ω = eβTS, Z = e−βF , Z = e−βΦG ,

where S is the entropy, T is the temperature, β = (kBT )
−1, F = −kBT lnZ

is the Helmholtz function, and ΦG = −kBT lnZ = F − µN = −pV is the
grand-potential.

• Recall the usual relations from quantum mechanics:

E = ~ω, p = ~k, E = p2/2m

• Photons:
ω = ck, k = 2π/λ, c = λν

E = ~kc = pc

• Planck distribution:

f(E) =
1

eβE − 1

• Fermi-Dirac and Bose-Einstein distributions:

lnZ = ±
∑

i

ln
(

1± eβ(µ−Ei)
)

f(E) =
1

eβ(E−µ) ± 1
,

where the sign + stands for fermions and the sign − stands for bosons.

• Polylogarithm function Lin(z):
∫

∞

0

dx
xn−1

z−1ex ± 1
= ∓Γ(n)Lin(∓z), Lin(1) = ζ(n),

where ζ is the Riemann zeta-function, and Γ(n) = (n− 1)! for n a positive
integer.

Li1(z) = ln

(

1

1− z

)

• Gaussian integral:
∫ +∞

−∞

dxe−ax2

=

√

π

a
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