FINAL EXAM ADVANCED MECHANICS, 30 January 2020, 13:30-15:30, time: 2 hours Three problems (all items have a value of 10 points)

Remark 1 : Answers may be written in English or Dutch.
Remark 2: Write answers of each problem on separate sheets and add your name on them.

Problem 1

A point mass m is contrained to move on the surface of a sphere with radius a. The sphere is fixed in space, so it is neither translating nor rotating.
The point mass is subject to a single potential force, such that it has a potential energy

$$
V=m \gamma \sin \theta \cos (2 \phi-\Omega t) .
$$

Here, γ and Ω are constants, r, θ and ϕ are spherical coordinates and t is time.
a. Show that the kinetic energy of this system is of the form

$$
T=A(\phi, \theta) p_{\theta}^{2}+B(\phi, \theta) p_{\phi}^{2}
$$

with p_{θ} and p_{ϕ} the generalised momenta.
Give explicit expressions for the functions $A(\phi, \theta)$ and $B(\phi, \theta)$.
b. Derive Hamiltonian's canonical equations of this system.
c. Give two advantages and two disadvantages of using the Hamilton formalism with respect to applying the Lagrange formalism.

See next page for problem 2

Solution of problem 1

$$
\begin{aligned}
& \text { Exam VKM } 1 g / 20 \\
& \text { Use spherical coordinates, where } r=a \Rightarrow \\
& \text { From equation sheol: } \\
& \qquad T=\frac{1}{2} m \theta^{2} \dot{\theta}^{2}+\frac{1}{2} m a^{2} \sin ^{2} \theta \dot{\phi}^{2} \\
& \text { Centralised momenta } \\
& \qquad P_{\theta}=\frac{\partial L}{O \dot{\theta}}=\frac{\partial}{\partial \dot{\theta}}(T-V)=\frac{\partial T}{\partial \dot{\theta}}=m a^{2} \dot{\theta} \\
& \quad P_{\phi}=\cdots=\frac{\partial T}{\partial \dot{\phi}}=m \theta^{2} \sin ^{2} \theta \dot{\phi} \\
& \text { So } \quad T=\frac{1}{2} m a^{2}\left(\frac{P_{\theta}}{m a^{2}}\right)^{2}+\frac{1}{2} m a^{2} \sin ^{2} \theta\left(\frac{P_{\phi}}{m a^{2} \sin ^{2} \theta}\right)^{2}
\end{aligned}
$$

$1 a$

Hence

$$
A=\frac{1}{2 m a^{2}}, \quad B=\frac{1}{2 m a^{2} \sin ^{2} \theta}
$$

b. Hamiltonian function from equation sheet, or directly

$$
H=T+V
$$

sine coordinate transform dose not depend explicitly on time.
EHamilton equation :

$$
\begin{aligned}
& \dot{\theta}=\frac{\partial H}{\partial P_{\theta}}=\frac{P_{\theta}}{m \theta_{0}^{2}} \\
& \dot{\phi}=\frac{\partial H}{\partial P_{\phi}}=\frac{P_{\phi}}{m a^{2} \sin ^{2} \theta} \\
& \dot{P_{B}}=-\frac{\partial H}{\partial \theta}=\frac{P_{\phi}^{2} \cos \theta}{m a^{2} \sin ^{3} \theta}-m \gamma \cos \theta \cos (2 \phi-\Omega t, \\
& \dot{P}_{\phi}=-\frac{\partial H}{\partial \phi}=2 m \gamma \sin \theta \sin (2 \phi-\Omega t)
\end{aligned}
$$

c. Advantages: i> H equations al first order, standard form

L equations second order, of first order nonstandard
2) Physical meaning H dear, meaning L not so dear.

Disadvantages: 1) Hequations only for frictionless systems.
2) H equations con not deal with forces of constraints.

Problem 2

A simple funicular system consists of two cars on a sloping surface, which are connected by a cable that passes over a frictionless pulley (see figure). A motor drives the rotation of the pulley, such that the cars move in opposite directions on straight tracks. In the figure, car 1 is moving downward and car 2 is moving upward.
In this problem, the sloping surface has an angle β with respect to the horizontal, the cars are modelled as point masses m_{1} and m_{2}, the pulley has a moment of inertia I and radius a, such that the tracks are a distance $2 a$ apart. The length of each track is l, the position of the centre of the pulley is at $x=l$ and \mathbf{g} denotes gravity.
Choose the $x-, y-$ and z-axes and origin O as is shown in the figure (x is along the sloping surface, z is perpendicular to the sloping surface).

a. Three important constraints of this system are

$$
\begin{aligned}
& f_{1}=\left(x_{1}+x_{2}-l\right)=0, \\
& f_{2}=a\left(\theta-\theta_{0}\right)-x_{2}=0, \\
& f_{3}=\theta-G(t)=0 .
\end{aligned}
$$

Here, x_{1} and x_{2} are the x-coordinates of car 1 and car 2, respectively, θ is an angle such that θ is the angular velocity of the pulley, θ_{0} is a constant and $G(t)$ is a given function of time.
Explain the physical meaning of these three constraints.
b. Show that the kinetic and potential energy of the funicular system are of the form

$$
\begin{aligned}
& T=\mu_{1} \dot{x}_{1}^{2}+\mu_{2} \dot{x}_{2}^{2}+\mu_{3} \dot{\theta}^{2} \\
& V=\nu_{1} x_{1}+\nu_{2} x_{2}+\nu_{3} \theta
\end{aligned}
$$

Express the six constants $\mu_{1}, \mu_{2}, \mu_{3}, \nu_{1}, \nu_{2}$ and ν_{3} in terms of the given model parameters.
c. Choose x_{1}, x_{2} and θ as generalised coordinates and apply the Lagrange formalism, using the results of items a and b, to derive expressions for

- the tensions in the cable on either side of the pulley;
- the torque that the motor exerts on the pulley to control the motion of the car.

Solution of problem 2

VKM Ig/20 exam Problem 2

20 . $f_{1}=0$: the length of the cable is $L=l+\pi a$, L is fixed
and $L=l-x_{1}+\pi i+\left(l-x_{2}\right)$
so $\quad x_{1}+x_{2}=2 f+y a-L=P$

- $f_{2}=0$: velocity $\mathrm{a} \dot{\theta}$ of rim of pulley must equal \dot{x}_{2} (no slip).
- $f_{3}=0$: $\frac{d d}{d E}(t)$ is the driver of the angular velocity of the pulley
c. See equation shoe. There are three constraints, so three
tog romp multipliers $\lambda_{r}, \lambda_{2}, \lambda_{3}$
b. $\quad T=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}+\frac{1}{2} I \dot{\theta}^{2}$

$$
V=m_{1} g x_{1} \sin B+m_{2} g x_{2} \sin B
$$

So
$\mu_{1}=\frac{1}{2} m_{1} . \quad \mu_{3}=\frac{1}{2} m_{2}, \quad \mu_{3}=\frac{1}{2} I$
$r_{1}=m_{1} g \sin \beta, \quad r_{2}=m_{3} g \sin \beta, \quad r_{3}=0$
Note: the pulley hos potential energy, but it is constant.

$$
L=T-V
$$

Lagrange's equation, of the first kind: egg.

$$
\frac{\partial}{d x} \frac{\partial L}{\partial \dot{x}_{1}}=\frac{\partial L}{\partial x_{1}}+\lambda_{1} \frac{\partial f_{1}}{\partial x_{1}}+\lambda_{2} \frac{\partial f_{2}}{\partial x_{1}}+\lambda_{3} \frac{\partial f_{3}}{\partial x_{1}}
$$

becomes

$$
\begin{aligned}
& m_{1} \ddot{x}_{1}=-m_{1} g \sin \beta+\lambda_{1} \\
& m_{2} \ddot{y}_{2}=-m_{2} g \sin \beta+\lambda_{1}-\lambda_{2} \\
& I \ddot{\theta}=\lambda_{2} a+\lambda_{3}
\end{aligned}
$$

So ${ }^{T}{ }^{1} \lambda_{1}$: tension in coble an taft. $T_{2}=\left(\lambda_{1}-\lambda_{2}\right)$ tension in cable un right
$N=$ 第会: tho torque exerted by the motor (λ a a is torque dux to differexem
Use constraints to rewrite equations as
which occurs if $m_{1} \neq m_{3}$)

$$
\begin{aligned}
-m_{1} a \ddot{G} & =-m_{1} g \sin B+\lambda_{1} \\
m_{2} a \ddot{B} & =-m_{2} g \sin B+\lambda_{1}-\lambda_{2} \\
I \ddot{G} & =\lambda_{2} a+\lambda_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { From } \text { First equation: } T_{1}=\lambda_{1}=m_{1}(g \sin \beta-a \ddot{G}) \\
& \text { Second equation: } T_{2}=\lambda_{1}-\lambda_{2}=m_{2}\left(g \sin \beta+\Delta \theta_{6}\right) \\
& \text { Third equation : } N=\lambda_{3}=I \ddot{\theta}-\lambda_{2} a \\
& 7
\end{aligned}
$$

Problem 3

Three identical pendulums of mass M and length l are suspended from a slightly elastic, massless rod. The elasticity in the rod brings about a coupling (with constant K) between each pair of masses m_{i} and m_{j}, with a corresponding potential energy $V_{i j}=\frac{1}{2} K\left(x_{i}-x_{j}\right)^{2}$. Here, x_{i} and x_{j} are the horizontal displacements of m_{i} and m_{j} with respect to their equilibrium positions.
Consider only the case of small oscillations.

a. One of the eigenfrequencies of the system is $\omega_{3}=\left(\frac{g}{l}\right)^{1 / 2}$. Find the other eigenfrequencies of this system.
b. Find the normal modes of oscillation.

If you have no answer to item a, then describe the method to find the normal modes.
c. Determine the general solution for $\theta_{1}(t), \theta_{2}(t), \theta_{3}(t)$.

If you have no answer to item b, describe the method to find this solution.

Solution problem 3

Three identical pendulums that are coupled through a slightly yielding rod.
a. The kinetic energy of the system is

$$
T=\frac{1}{2} M l^{2}\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{2}^{2}+\dot{\theta}_{3}^{2}\right) .
$$

The potential energy is

$$
V=M g\left(z_{1}+z_{2}+z_{3}\right)+\frac{1}{2} K\left(\left(x_{1}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}\right) .
$$

In this case, oscillations are small, so

$$
x_{i}=-l \sin \theta_{i} \simeq l \theta_{i}, \quad z_{-} i=l\left[1-\cos \theta_{i}\right] \simeq \frac{1}{2} l \theta_{i}^{2},
$$

hence

$$
V=\frac{1}{2} M g l\left(\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}\right)+\frac{1}{2} K l^{2}\left(\left(\theta_{1}-\theta_{2}\right)^{2}+\left(\theta_{1}-\theta_{3}\right)^{2}+\left(\theta_{2}-\theta_{3}\right)^{2}\right) .
$$

Next, construct the Lagrangian $L=T-V$, derive Lagrange's equations

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{i}}\right)=\left(\frac{\partial L}{\partial \theta_{i}}\right)
$$

and write them in standard form. This yield the following M and K matrices:

$$
\mathbf{M}=M\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \mathbf{K}=\left(\begin{array}{ccc}
\alpha & -K & -K \\
-K & \alpha & -K \\
-K & -K & \alpha
\end{array}\right)
$$

where $\alpha=(M(g / l)+2 K)$. For obtaining the eigenfrequencies, we have to evaluate the determinant:

$$
\left|K-\omega^{2} M\right|=\left|\begin{array}{ccc}
\alpha-M \omega^{2} & -K & -K \\
-K & \alpha-M \omega^{2} & -K \\
-K & -K & \alpha-M \omega^{2}
\end{array}\right|=0 .
$$

Introducing $\lambda=\left(\alpha-M \omega^{2}\right)$, this expression can be rewritten as

$$
\lambda^{3}-3 K^{2} \lambda-2 K^{3}=0,
$$

or, using the hint,

$$
(\lambda-2 K)\left[\lambda^{2}+2 K \lambda+K^{2}\right]=0 .
$$

which yields $\lambda_{3}=2 K$ and $\lambda_{1}=\lambda_{2}=-K$.
Using the definition of λ it follows the three eigenfrequencies

$$
\omega_{1}^{2}=\omega_{2}^{2}=\frac{g}{l}+3 \frac{K}{M}, \quad \omega_{3}^{2}=\frac{g}{l} .
$$

b. Having evaluated the eigenfrequencies, we can insert them back into the equations of motion to find the eigenvectors a. That is, starting with ω_{3} :

$$
\left(K_{j, k}-\omega_{3}^{2} M_{j, k}\right) a_{j 3}=0 .
$$

That gives $a_{13}=a_{23}=a_{33}=1 / \sqrt{3}$.
If we repeat the calculation for $\omega_{1}=\omega_{2}$ after a bit of algebra we have

$$
a_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \quad a_{2}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right), \quad a_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

c. The three normal modes are

$$
\begin{aligned}
\mathbf{Q}_{1} & =\left(\begin{array}{l}
a_{1,1} \\
a_{2,1} \\
a_{3,1}
\end{array}\right) \cos \left(\omega_{1} t-\delta_{1}\right), \\
\mathbf{Q}_{2} & =\left(\begin{array}{l}
a_{1,2} \\
a_{2,2} \\
a_{3,2}
\end{array}\right) \cos \left(\omega_{2} t-\delta_{2}\right), \\
\mathbf{Q}_{3} & =\left(\begin{array}{l}
a_{1,3} \\
a_{2,3} \\
a_{3,3}
\end{array}\right) \cos \left(\omega_{2} t-\delta_{3}\right),
\end{aligned}
$$

where $a_{i, j}$ is the i 'th component of eigenvector j. From this, we can construct the general solution:

$$
\begin{aligned}
& \theta_{1}(t)=2 A_{2} \cos \left(\omega_{2} t-\delta_{1}\right)+A_{3} \cos \left(\omega_{3} t-\delta_{3}\right) \\
& \theta_{2}(t)=A_{1} \cos \left(\omega_{1} t-\delta_{1}\right)-A_{2} \cos \left(\omega_{2} t-\delta_{2}\right)+A_{3} \cos \left(\omega_{3} t-\delta_{3}\right) \\
& \theta_{3}(t)=-A_{1} \cos \left(\omega_{1} t-\delta_{1}\right)-A_{2} \cos \left(\omega_{2} t-\delta_{2}\right)+A_{3} \cos \left(\omega_{3} t-\delta_{3}\right)
\end{aligned}
$$

with A_{1}, A_{2}, A_{3} amplitudes and $\delta_{1}, \delta_{2}, \delta_{3}$ phases that depend on the initial conditions.

Equation sheet Advanced Mechanics for final exam (version 2019/2020)

A1. Goniometric relations:

$$
\begin{array}{ll}
\cos (2 \alpha)=\cos ^{2} \alpha-\sin ^{2} \alpha, & \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
\sin (2 \alpha)=2 \sin \alpha \cos \alpha, & \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta
\end{array}
$$

A2. Spherical coordinates r, θ, ϕ :

$$
\begin{aligned}
& x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta \\
& d x d y d z=r^{2} \sin \theta d r d \theta d \phi \\
& \mathbf{v}=\mathbf{e}_{r} \dot{r}+\mathbf{e}_{\theta} r \dot{\theta}+\mathbf{e}_{\phi} r \dot{\phi} \sin \theta \\
& \begin{aligned}
& \mathbf{a}=\mathbf{e}_{r}\left(\ddot{r}-r \dot{\phi}^{2} \sin ^{2} \theta-r \dot{\theta}^{2}\right)+\mathbf{e}_{\theta}\left(r \ddot{\theta}+2 \dot{r} \dot{\theta}-r \dot{\phi}^{2} \sin \theta \cos \theta\right) \\
&+\mathbf{e}_{\phi}(r \ddot{\phi} \sin \theta+2 \dot{r} \dot{\phi} \sin \theta+2 r \dot{\theta} \dot{\phi} \cos \theta)
\end{aligned}
\end{aligned}
$$

A3. Cylindrical coordinates R, ϕ, z :

$$
\begin{array}{ll}
x=R \cos \phi, & y=R \sin \phi, \\
d x d y d z=R d R d \phi d z & z=z \\
\mathbf{v}=\mathbf{e}_{R} \dot{R}+\mathbf{e}_{\phi} R \dot{\phi}+\mathbf{e}_{z} \dot{z} \\
\mathbf{a}=\mathbf{e}_{R}\left(\ddot{R}-R \dot{\phi}^{2}\right)+\mathbf{e}_{\phi}(2 \dot{R} \dot{\phi}+R \ddot{\phi})+\mathbf{e}_{z} \ddot{z} &
\end{array}
$$

A4. $\quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})$
A5. $\quad(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}=(\mathbf{B} \times \mathbf{C}) \cdot \mathbf{A}=(\mathbf{C} \times \mathbf{A}) \cdot \mathbf{B}$
A6. $\quad\left(\frac{d \mathbf{Q}}{d t}\right)_{\text {fixed }}=\left(\frac{d \mathbf{Q}}{d t}\right)_{\text {rot }}+\boldsymbol{\omega} \times \mathbf{Q}$

B1. Noninertial reference frames:

$$
\begin{aligned}
& \mathbf{v}=\mathbf{v}^{\prime}+\boldsymbol{\omega} \times \mathbf{r}^{\prime}+\mathbf{V}_{0} \\
& \mathbf{a}=\mathbf{a}^{\prime}+\dot{\boldsymbol{\omega}} \times \mathbf{r}^{\prime}+2 \boldsymbol{\omega} \times \mathbf{v}^{\prime}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \mathbf{r}^{\prime}\right)+\mathbf{A}_{0}
\end{aligned}
$$

C1. Systems of particles:

$$
\sum_{i} \mathbf{F}_{i}=\frac{d \mathbf{p}}{d t}, \quad \frac{d \mathbf{L}}{d t}=\mathbf{N}
$$

C2. Angular momentum vector: $\mathbf{L}=\mathbf{r}_{\mathrm{cm}} \times m \mathbf{v}_{c m}+\sum_{i} \bar{r}_{i} \times m_{i} \bar{v}_{i}$
where $\overline{\mathbf{r}}_{i}=\mathbf{r}_{i}-\mathbf{r}_{c m}, \overline{\mathbf{v}}_{i}=\mathbf{v}_{i}-\mathbf{v}_{c m}$
C3. Equations of motion for 2-particle system with central force:

$$
\mu \frac{d^{2} \mathbf{R}}{d t^{2}}=f(R) \frac{\mathbf{R}}{R}
$$

with $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ the reduced mass, \mathbf{R} relative position vector.

C4. Motion with variable mass:

$$
\mathbf{F}_{e x t}=m \dot{\mathbf{v}}-\mathbf{V} \dot{m}
$$

with \mathbf{V} velocity of Δm relative to m.

D1. Moment of inertia tensor:

$$
\mathbf{I}=\sum_{i} m_{i}\left(\mathbf{r}_{i} \cdot \mathbf{r}_{i}\right) \mathbf{1}-\sum_{i} m_{i} \mathbf{r}_{i} \mathbf{r}_{i}
$$

D2. Moment of inertia about an arbitrary axis: $I=\tilde{\mathbf{n}} \mathbf{I} \mathbf{n}=m k^{2}$
D3. Formulation for sliding friction: $F_{P}=\mu_{k} F_{N}$
D4. Impulse and rotational impulse: $\mathbf{P}=\int \mathbf{F} d t=m \Delta \mathbf{v}_{c m}, \quad \int N d t=P l$ with l the distance between line of action and the fixed rotation axis.

E1. Transformation rule components of a real cartesian tensor, rank p, dimension N :

$$
T_{i_{1} i_{2} \ldots i_{p}}^{\prime}=\alpha_{i_{1} j_{1}} \alpha_{i_{2} j_{2}} \ldots \alpha_{i_{p} j_{p}} T_{j_{1} j_{2} \ldots j_{p}}
$$

F1. Euler equations: $N_{1}=I_{1} \dot{\omega}_{1}+\omega_{2} \omega_{3}\left(I_{3}-I_{2}\right)$
(other equations follow by cyclic permutation of indices)

G1. Lagrange's equations (first kind):
$\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=\frac{\partial L}{\partial q_{i}}+\lambda_{k} \frac{\partial f_{k}}{\partial q_{i}}$
with $f_{k}\left(q_{1}, q_{2}, \ldots, q_{n}, t\right)=0$ constraints.
G2. Hamilton's variational principle:
$\delta \int_{t_{1}}^{t_{2}} L d t=0$
G3. Hamiltonian function:
$H=p_{i} \dot{q}_{i}-L$
G4. Hamilton's canonical equations:
$\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}, \quad \dot{q}_{i}=\frac{\partial H}{\partial p_{i}}$

