
4 Solutions

Let op: De uitwerkingen hieronder zijn wat we gebruikt hebben voor de correctie, en soms wat
beknopt. Bij het nakijken letten we er ook op dat je duidelijk maakt dat je begrijpt wat je opschrijft.
Daarvoor is vaak net iets meer nodig dan wat hieronder in de uitwerkingen gegeven is.

4.1 Swinging Atwood Machine – Solution

(a) The potential energy is given by

U = gr (M −m cos θ) ,

and the kinetic energy is
T = 1

2 (m+M) ṙ2 + 1
2mr

2θ̇2

(b) The generalized impulses are:

pr =
∂T

∂ṙ
= (m+M) ṙ pθ =

∂T

∂θ̇
= mr2θ̇

(c) The Hamiltonian is:

H =
1
2

p2
r

m+M
+

1
2
p2
θ

mr2
+ gr (M −m cos θ)

(d)
ṙ = ∂H

∂pr
= pr

M+m θ̇ = ∂H
∂pθ

= pθ
mr2

ṗr = −∂H
∂r = p2θ

mr3
− g (M −m cos θ) ṗθ = −∂H

∂θ = −grm sin θ
r̈ = d

dt
∂H
∂pr

= ṗr
m+M θ̈ = d

dt
∂H
∂pθ

= ṗθ
mr2
− 2 pθ ṙ

mr3

= p2θ
m(m+M)r3

− g
m+M (M −m cos θ) = −g sin θ

mr − 2 pθpr
m(m+M)r3

(e) The EOM are non-linear coupled differential equations, r̈ contains terms in pθ and cos θ; θ̈
similarly has terms in pr and r. There is no obvious way to simplify or separate the variables.
(for m/M = 3 there is a non-obvious way, but I did not expect you to go that far)
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4.2 Tumbling Blocks – Solution

(a) We can calculate the moments of inertia:

I =
∫
dx

∫
dy

∫
dz ρ(x, y, z)

(x2 + y2 + z2
)
E3 −

xx xy xz
yx yy yz
zx zy zz


The moment around the z axis Izz is

Izz = ρ

∫ h/2

−h/2
dz

∫ l

0
dy

∫ b

0
dx
(
x2 + y2

)
= 1

3ρhbl
(
b2 + l2

)
= 1

3M
(
b2 + l2

)
M = ρV = ρhbl is the total mass of the block. The products of inertia (non-diagonal terms,
as discussed in class) are:

Ixy = −ρ
∫ h/2

−h/2
dz

∫ l

0
dy

∫ b

0
dxxy = 1

4ρhb
2l2 = −1

4Mbl

Ixz = −ρ
∫ h/2

−h/2
dz

∫ l

0
dy

∫ b

0
dxxz = 0

Iyz = −ρ
∫ h/2

−h/2
dz

∫ l

0
dy

∫ b

0
dxyz = 0

(b) Torque is necessary if L and ω are not parallel:

I =

Ixx Ixy 0
Ixy Iyy 0
0 0 Izz


L = I · ω, so:

L =

Ixxωx + Ixyωy
Ixyωx + Iyyωy

Izzωz


Thus this is the case for rotations around the x and y axis.

(c) The smalles moments of inertia we will get for axes through the centre of mass. The three
principal axis are the three axes normal to the surfaces (as in the picture).

(d) We can derive the Euler equations directly from the two formulae given:

L = (λ1ω1, λ2ω2, λ3ω3) L̇ + ω × L = Γ

We assume that we are in a system of principal axes, and for free rotation we set Γ = 0):

λ1ω̇1 − (λ2 − λ3)ω2ω3 = Γ1 = 0
λ2ω̇2 − (λ3 − λ1)ω3ω1 = Γ2 = 0
λ3ω̇3 − (λ1 − λ2)ω1ω2 = Γ3 = 0

5



(e) We consider ω̇3 = 0 and write the remaining Euler equations:

ω̇1 −
(
λ2 − λ3

λ1
ω3

)
ω2 = 0

ω̇2 −
(
λ3 − λ1

λ2
ω3

)
ω1 = 0

For both we find an equation of motion of the type ω̈1 +

>0︷ ︸︸ ︷
(λ3 − λ2)

<0︷ ︸︸ ︷
(λ1 − λ3)

λ1λ2
ω2

3ω1 = 0, which
is a harmonic oscillation. The two oscillations are coupled (via the Euler-equation) in such a
way that two oscillations are off by π

2 = 90 degrees, i.e. if one is a cosine, the other is a sine.
For the answer an explicit form of these equations should be given.

(f) For rotation around ê1 we assume ω̇1 = 0, and we find the same result as above; the equation

of motion is ω̈2 +

>0︷ ︸︸ ︷
(λ3 − λ1)

<0︷ ︸︸ ︷
(λ1 − λ2)

λ1λ3
ω2

1ω2 = 0, which is again a harmonic oscillation.

For rotation around ê2, we consider ω̇2 = 0 and find:

ω̇1 −
(
λ2 − λ3

λ1
ω2

)
ω3 = 0

ω̇3 −
(
λ1 − λ2

λ3
ω2

)
ω1 = 0

For both we find an equation of motion ω̈1 +

<0︷ ︸︸ ︷
(λ2 − λ3)

<0︷ ︸︸ ︷
(λ1 − λ2)

λ1λ2
ω2

3ω1 = 0, which is an expo-
nentially growing solution.

note: if students follow the hints, they will find solutions with e±iCt for ê1 and ê3 (harmonic),
and solutions with e±Ct for ê2 (exponential).

(g) Rotations around the principal axis with the largest and the principal axis with the small-
est moment are stable, as small disturbances result in limited, harmonic motion around the
main rotational axis. Rotations around the principal axis with the non-extreme moments are
unstable, as small disturbances grow exponentially with time.
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4.3 Lagrange Points – solution

a) Specify all forces (including fictitious ones) on m and their direction:

There are two gravitational forces, F13, and F23, pointing from m to the respective masses (M1

and M2). The centrifugal force points raidally rouward from the center of mass. The Coriolis
force points in the direction v×Ω, e.g. if v points in the positive x direction, the Coriolis force
would point outwards, along y (assuming Ω is positive).

b) v = 0, so the only forces are two gravitational forces and the centrifugal force.

The centrifugal force is
Fcf = mΩ2rr̂ = mΩ2(x, y)

The position of M1 in the center of mass is (−M2/(M1 +M2)R, 0) = (−αR, 0), so that

F13 =
GM1m

((x+ αR)2 + y2)
3
2

(−(x+ αR),−y)

and the position of M2 in the center of mass is (M1/(M1 +M2)R, 0) = (βR, 0), so that

F23 =
GM2m

((x− βR)2 + y2)
3
2

(−(x− βR),−y)

The total force is:

Ftot,x = mΩ2x+
−GM1m(x+ αR)

((x+ αR)2 + y2)
3
2

+
−GM2m(x− βR)

((x− βR)2 + y2)
3
2

Ftot,y = mΩ2y +
−GM1my

((x+ αR)2 + y2)
3
2

+
−GM2my

((x− βR)2 + y2)
3
2

This can be further simplified by noticing:

GM2 = Gα(M1 +M2) = αΩ2R3

(which is needed in the next question)

c)

F⊥ = Ftot ·
1√

x2 + y2
(y,−x) =

1√
x2 + y2

(Ftot,xy − Ftot,yx)

Note that the centrifugal force has no transverse component. Using also immediately Eq b

F⊥ =
mΩ2R3√
x2 + y2

(
−βαRy

((x+ αR)2 + y2)
3
2

+
αβRy

((x− βR)2 + y2)
3
2

)

=
mΩ2R4αβy√

x2 + y2

(
1

((x− βR)2 + y2)
3
2

− 1

((x+ αR)2 + y2)
3
2

)
,

where the terms with xy in the numerator immediately canceled.

This component is zero when (x + αR)2 = (x − βR)2, meaning that the x-coordinate of the
Langrage points is in the middel between the two masses at xM1 = −αR and xM2 = βR.
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d)

F‖ = Ftot ·
1√

x2 + y2
(x, y) =

1√
x2 + y2

(Ftot,xx− Ftot,yy)

Note that the centrifugal force is F‖,cf = mΩ2
√
x2 + y2

Using the fact that (xL+αR) = (xL−βR) for the Lagrange points, we can write the denominators
of the gravitational forces all as ((xL + αR)2 + y2)2/3 (or ((xL − βR)2 + y2)3/2), so that

F‖ =
mΩ2R3√
x2 + y2

(
x2 + y2

R3
+
−α(x+ βR)x− β(x− αR)x− αy2 − βy2

((xL + αR)2 + y2)2/3

)
=

mΩ2R3√
x2 + y2

(
x2 + y2

R3
+
−(α+ β)x2 − (α+ β)y2

((xL + αR)2 + y2)3/2

)
= mΩ2R3

√
x2 + y2

(
1
R3
− 1

((xL + αR)2 + y2)3/2

)
which is zero if the distance between the Lagrange point and M1 (

√
(xL + αR)2 + y2) is equal

to R, i.e. the distance between M1 and M2, so L4 and L5 lie on the apex of the two equilateral
triangles with M1, M2 at the corners.

e) The restoring force is provided by the Coriolis force. As discussed in class, there are stable
orbits around the Lagrange points.
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