DEPARTMENT OF PHYSICS AND ASTRONOMY, FACULTY OF SCIENCE, UU. Made available in electronic form by the $\mathcal{T}_{\mathcal{BC}}$ of A-Eskwadraat IN 2006/2007, THE COURSE NS-255B WAS GIVEN BY R. HOLZINGER.

Klimaatfysica en chemie (NS-255b) 30 januari 2007

Question 1: CH_4 from CO oxidation

Assume a clean atmosphere where CO is exclusively produced from the oxidation of CH_4 and removed by oxidation to CO_2 .

- a) Write down the chemical reaction equations for those two reactions (only the first step for CH_4 oxidation). (2 points)
- b) Write down the differential equations for the removal of CH_4 and CO according to those two reactions. (2 points)
- c) Assume that 0.8 molecules CO are produced for every molecule of CH_4 removed and calculate the steady state concentration of CO in this atmosphere as a function of $[CH_4]$. (2 points)
- d) Does this value depend on OH levels? If so, why? If not, why not? (2 points)
- e) Calculate $[CO]_{ss}$ for T = 288 K (summer) and T = 27 K (winter). Do you see the same change in the atmosphere? Why or why not? (2 points)Note:

 $k_{\rm CH_4+OH} = 2.45 \cdot 10^{-12} \exp\{-1775/T\} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ $k_{\rm CO+OH} = 2.4 \cdot 10^{-13} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ at atmospheric pressure.

Question 2: Tropospheric O_3 formation

- a) Draw a conceptual diagram of the photochemical O₃ production mechanism. (4 points)
- b) Which species play which role?
- c) Which reaction becomes important at very low NO_x levels? What is the effect on OH and on $O_3?$ (2 points)
- d) Which reaction becomes important at very high NO_x levels? What is the effect on OH and on $O_3?$ (2 points)

Question 3: Stratospheric ozone

- a) The basis reactions of stratospheric ozone chemistry are included in the Chapman cycle in which oxygen atoms play a major role. What is the O_x family? Derive an equation for the photochemical steady state of $[O_x]$. (3 points)
- b) The Chapman cycle misses important destruction reactions. Write down the general reaction cycle for a catalytic ozone destruction reaction. What is the net reaction? Which species are important catalysts? (2.5 points)
- $(1.5 \ points)$ c) Name at least 3 important ingredients that lead to the stratospheric ozone hole.
- d) Why does the stratospheric ozone hole only occur in the polar regions? Why is it stronger in the Antarctic then in the Arctic? (1 point)

(10 points)

(2 points)

(10 points)

(10 points)

e) Typical mixing ratios in the ozone layer region are: $[CH_4] \sim 1$ ppm and $[O_3] \sim 5$ ppm. How many O_3 molecules can a Cl atom on average destroy at stratospheric temperatures (-60°C) before it is deactivated by reaction with CH₄? (2 points)

 $\begin{aligned} \mathbf{k}_{\mathrm{Cl+CH_4}} &= 1.1 \cdot 10^{-11} \cdot \exp\{-1400/T\} \ \mathrm{cm^3 \ molecule^{-1} \ s^{-1}} \\ \mathbf{k}_{\mathrm{Cl+O_3}} &= 2.9 \cdot 10^{-11} \cdot \exp\{-260/T\} \ \mathrm{cm^3 \ molecule^{-1} \ s^{-1}} \end{aligned}$

Question 4: Isotope fractionation of N_2O

Scientists carry out laboratory experiments to determine the isotope effects in the photolysis of N₂O. They start with a concentration of 5 ppm N₂O and continue the reaction until 2 ppm of N₂O is left. They find an isotope enrichment of $\delta^{15}N = 35\%_0$ of the remaining N₂O relative to the initial gas.

(10+3 points)

a) Calculate the isotope fractionation constant ε (in $\%_0$). (4 points)

Note: If you do not recall the Rayleigh fractionation equation, you can try to derive it from the first order removal reaction of two isotopic compounds X and X' with rate constants k and k'. Use R = X'/X, $\alpha = k/k'$, the definition of the δ formula $\delta = (R/R_0 - 1)$ and the remaining fraction $f = x/x_0$ (3 extra points)

- b) What is the value for δ^{15} N when 4, 3 and 1 ppm of N₂O are left? (3 points)
- c) The experiment takes 12 hours (until 2 ppm of N₂O is left). Calculate the photolysis rate constant for N₂O. What is the photolysis rate constant for ¹⁵N-substuted N₂O? (2 points)
- d) What is the requirement for the application of the Rayleigh fractionation equation? What is the problem of its application in the atmosphere to long-lived gases like N_2O ? (1 points)