Electrodynamics Final Exam

Date:Friday, July 1, 2016Duration:3 hoursTotal25Points:

- 1. Use a seperate sheet for every exercise.
- 2. Write your name and initials on all sheets, on the first sheet also your address and your student ID number.
- 3. Write clearly, unreadable work cannot be corrected.
- 4. You may use the book of Griffiths.
- 5. Distribute your time wisely between the exercises.

1. Interaction of two dipoles (4 points)

A magnetic dipole \vec{m}_1 at x = y = z = 0 is oriented in the z direction.

- a) A second dipole \vec{m}_2 is positioned at x = y = 0 and can move in the z direction. Calculate the force $\vec{F}(z)$ between the two dipoles and the potential energy U(z), when
 - 1. \vec{m}_2 points also in the z direction.
 - 2. \vec{m}_2 points in the *x* direction.

(2 points)

b) Now the second dipole \vec{m}_2 is positioned at y = z = 0 and can move in the x direction. Calculate the force $\vec{F}(x)$ and the potential energy U(x) for the same two directions of \vec{m}_2 as above. (2 points)

2. A charged disk as a magnetic dipole (8 points)

A thin, non-conducting disk of radius R is spinning around its symmetry axis with angular velocity ω . The disk is uniformly charged with a charge density per unit area σ .

a) Show that the exact expression for the magnetic field along the symmetry axis of the disk as a function of the distance z is given by

$$\vec{B}(z) = \frac{\mu_0 \sigma \omega}{2} \left(\frac{R^2 + 2z^2}{\sqrt{R^2 + z^2}} - 2|z| \right) \hat{z} ,$$

with \hat{z} being the unit vector in z-direction. (Hint: $\int \frac{r^3}{(r^2+z^2)^{3/2}} dr = \frac{r^2+2z^2}{\sqrt{r^2+z^2}}$) (4 points)

b) For distances far from the disk, the disk looks like a magnetic dipole. Show by integration of the surface current density

$$\vec{K}(r_{2d}) = r_{2d}\omega\sigma\hat{\phi}$$

 $(r_{2d} \text{ is the distance in the x-y-plane to the origin and } \hat{\phi} \text{ is the unit vector in azimuthal direction}), that the dipole moment is given by$

$$\vec{m} = \frac{\pi \sigma \omega R^4}{4} \hat{z} \tag{1}$$

where \hat{z} is the unit vector in z-direction. (2 points)

c) Show that the expressions obtained agree at large distances from the disk (Hint: you need to perform a Taylor series up to fourth order). (2 points)

3. Test charge over two crossed grounded metal plates (7 points)

We consider a point charge +q which is placed at the point $\vec{x}_1 = (0, a/2, d/2)$. There are two grounded plates, one in the xy-plane thus defined by z = 0, another in the xz-plane, defined by y = 0. Consequently, they share the x-axis. The plates are at potential V = 0.

- a) Determine the potential in this situation using the method of image charges. Show that it is given by $V(\vec{r}) = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{|\vec{r}-\vec{x}_1|} + \frac{1}{|\vec{r}-\vec{x}_2|} \frac{1}{|\vec{r}-\vec{x}_3|} \frac{1}{|\vec{r}-\vec{x}_4|} \right)$ with $\vec{x}_1 = (0, a/2, d/2)$, $\vec{x}_2 = -\vec{x}_1, \vec{x}_3 = (0, -a/2, d/2)$, and $\vec{x}_4 = -\vec{x}_3$ by explicitly showing that the boundary condition is fulfilled.(1 point)
- b) Determine the charge distribution on the plates from the potential given in a). (2 points)
- c) For this part of the exercise assume a = d in the potential in **a**). Use Taylor expansion for $r \gg d$ to show that the dipole moment vanishes. Argue whether the quadrupole moment is finite. (2 points)
- d) Now we assume that $a \gg d$. We now shift the coordinate system such that the new origin sits at (0, a/2, 0) and positions are now given with respect to this new origin. In terms of this position \vec{r} there are now three regimes in which the potential approximately looks like (a) a monopole, (b) a dipole, and (c) a quadrupole. Make a sketch and draw these regions and give a short justification. (2 points)

4. Transmission of light (6 points)

A plane wave is incident normally on a layered interface as shown in the figure from the left in z-direction. The indices of refraction of the three non-permeable media are n_1 , n_2 , and n_3 . The intermediate layer is located between z = 0 and z = d. Each of the other media is semi-infinite. One can make an ansatz in the three regions: on the left (region with n_1) we

have $\vec{E}_I = \vec{E}_0 e^{i\vec{k}_1 \cdot \vec{r} - i\omega t} + \vec{E}_1 e^{-i\vec{k}_1 \cdot \vec{r} - i\omega t}$, in the intermediate region (with n_2) we have $\vec{E}_{II} = \vec{E}_{2+} e^{i\vec{k}_2 \cdot \vec{r} - i\omega t} + \vec{E}_{2-} e^{-i\vec{k}_2 \cdot \vec{r} - i\omega t}$ and on the right (with n_3) we have the transmitted one given by $\vec{E}_{III} = \vec{E}_3 e^{i\vec{k}_3 \cdot \vec{r} - i\omega t}$.

a) Derive the boundary conditions for the two interfaces. (4 points)

b) Show that the reflection coefficient is given by

$$R = \left| \frac{\left(1 - \frac{n_2}{n_1}\right) \left(1 + \frac{n_3}{n_2}\right) + \left(1 + \frac{n_2}{n_1}\right) \left(1 - \frac{n_3}{n_2}\right) e^{2ik_2d}}{\left(1 + \frac{n_2}{n_1}\right) \left(1 + \frac{n_3}{n_2}\right) + \left(1 - \frac{n_2}{n_1}\right) \left(1 - \frac{n_3}{n_2}\right) e^{2ik_2d}} \right|^2.$$

(2 points)