Electrodynamics
 Final Exam

Date: Friday, July 1, 2016
Duration: 3 hours
Total 25
Points:

1. Use a seperate sheet for every exercise.
2. Write your name and initials on all sheets, on the first sheet also your address and your student ID number.
3. Write clearly, unreadable work cannot be corrected.
4. You may use the book of Griffiths.
5. Distribute your time wisely between the exercises.

1. Interaction of two dipoles (4 points)

A magnetic dipole \vec{m}_{1} at $x=y=z=0$ is oriented in the z direction.
a) A second dipole \vec{m}_{2} is positioned at $x=y=0$ and can move in the z direction. Calculate the force $\vec{F}(z)$ between the two dipoles and the potential energy $U(z)$, when

1. \vec{m}_{2} points also in the z direction.
2. \vec{m}_{2} points in the x direction.
(2 points)
b) Now the second dipole \vec{m}_{2} is positioned at $y=z=0$ and can move in the x direction. Calculate the force $\vec{F}(x)$ and the potential energy $U(x)$ for the same two directions of \vec{m}_{2} as above. (2 points)

2. A charged disk as a magnetic dipole (8 points)

A thin, non-conducting disk of radius R is spinning around its symmetry axis with angular velocity ω. The disk is uniformly charged with a charge density per unit area σ.
a) Show that the exact expression for the magnetic field along the symmetry axis of the disk as a function of the distance z is given by

$$
\vec{B}(z)=\frac{\mu_{0} \sigma \omega}{2}\left(\frac{R^{2}+2 z^{2}}{\sqrt{R^{2}+z^{2}}}-2|z|\right) \hat{z}
$$

with \hat{z} being the unit vector in z-direction. (Hint: $\int \frac{r^{3}}{\left(r^{2}+z^{2}\right)^{3 / 2}} d r=\frac{r^{2}+2 z^{2}}{\sqrt{r^{2}+z^{2}}}$) (4 points)

b) For distances far from the disk, the disk looks like a magnetic dipole. Show by integration of the surface current density

$$
\vec{K}\left(r_{2 d}\right)=r_{2 d} \omega \sigma \hat{\phi}
$$

$\left(r_{2 d}\right.$ is the distance in the x -y-plane to the origin and $\hat{\phi}$ is the unit vector in azimuthal direction), that the dipole moment is given by

$$
\begin{equation*}
\vec{m}=\frac{\pi \sigma \omega R^{4}}{4} \hat{z} \tag{1}
\end{equation*}
$$

where \hat{z} is the unit vector in z-direction. (2 points)
c) Show that the expressions obtained agree at large distances from the disk (Hint: you need to perform a Taylor series up to fourth order). (2 points)

3. Test charge over two crossed grounded metal plates (7 points)

We consider a point charge $+q$ which is placed at the point $\vec{x}_{1}=(0, a / 2, d / 2)$. There are two grounded plates, one in the xy-plane thus defined by $z=0$, another in the xz-plane, defined by $y=0$. Consequently, they share the x-axis. The plates are at potential $V=0$.

a) Determine the potential in this situation using the method of image charges. Show that it is given by $V(\vec{r})=\frac{q}{4 \pi \epsilon_{0}}\left(\frac{1}{\left|\vec{r}-\vec{x}_{1}\right|}+\frac{1}{\left|\vec{r}-\vec{x}_{2}\right|}-\frac{1}{\left|\vec{r}-\vec{x}_{3}\right|}-\frac{1}{\left|\vec{r}-\vec{x}_{4}\right|}\right)$ with $\vec{x}_{1}=(0, a / 2, d / 2)$, $\vec{x}_{2}=-\vec{x}_{1}, \vec{x}_{3}=(0,-a / 2, d / 2)$, and $\vec{x}_{4}=-\vec{x}_{3}$ by explicitly showing that the boundary condition is fulfilled.(1 point)
b) Determine the charge distribution on the plates from the potential given in a). (2 points)
c) For this part of the exercise assume $a=d$ in the potential in a). Use Taylor expansion for $r \gg d$ to show that the dipole moment vanishes. Argue whether the quadrupole moment is finite. (2 points)
d) Now we assume that $a \gg d$. We now shift the coordinate system such that the new origin sits at $(0, a / 2,0)$ and positions are now given with respect to this new origin. In terms of this position \vec{r} there are now three regimes in which the potential approximately looks like (a) a monopole, (b) a dipole, and (c) a quadrupole. Make a sketch and draw these regions and give a short justification. (2 points)

4. Transmission of light (6 points)

A plane wave is incident normally on a layered interface as shown in the figure from the left in z-direction. The indices of refraction of the three non-permeable media are n_{1}, n_{2}, and n_{3}. The intermediate layer is located between $z=0$ and $z=d$. Each of the other media is semi-infinite. One can make an ansatz in the three regions: on the left (region with n_{1}) we

have $\vec{E}_{I}=\vec{E}_{0} e^{i \vec{k}_{1} \cdot \vec{r}-i \omega t}+\vec{E}_{1} e^{-i \vec{k}_{1} \cdot \vec{r}-i \omega t}$, in the intermediate region (with n_{2}) we have $\vec{E}_{I I}=$ $\vec{E}_{2+} e^{i \vec{k}_{2} \cdot \vec{r}-i \omega t}+\vec{E}_{2-} e^{-i \vec{k}_{2} \cdot \vec{r}-i \omega t}$ and on the right (with n_{3}) we have the transmitted one given by $\vec{E}_{I I I}=\vec{E}_{3} e^{i \vec{k}_{3} \cdot \vec{r}-i \omega t}$.
a) Derive the boundary conditions for the two interfaces. (4 points)
b) Show that the reflection coefficient is given by

$$
R=\left|\frac{\left(1-\frac{n_{2}}{n_{1}}\right)\left(1+\frac{n_{3}}{n_{2}}\right)+\left(1+\frac{n_{2}}{n_{1}}\right)\left(1-\frac{n_{3}}{n_{2}}\right) e^{2 i k_{2} d}}{\left(1+\frac{n_{2}}{n_{1}}\right)\left(1+\frac{n_{3}}{n_{2}}\right)+\left(1-\frac{n_{2}}{n_{1}}\right)\left(1-\frac{n_{3}}{n_{2}}\right) e^{2 i k_{2} d}}\right|^{2} .
$$

(2 points)

