Graphics (INFOGR 2012-2013): Final Exam (T2)

Thursday, July 4, 2013, 17:00, EDUC-GAMMA (time for the exam: max. 2 hours)

StudentID / studentnummer

Last name / achternaam
First name / voornaam
\square
\square
\square

Do not open the exam until instructed to do so!
 Read the instructions on this page carefully!

- You may write your answers in English or Dutch. Use a pen, not a pencil. Do not use red or green.
- Fill in your name and student ID at the top of this page, and on every additional paper you want to turn in.
- Answer the questions in the designated areas on these exam sheets. If you need more space, make a mark at the end of the page and continue writing on the additional paper provided by us. You are not allowed to use your own paper. On the additional paper, make sure to clearly indicate the problem number and don't forget to write your name and student ID on it.
- This is a closed book exam. You may not use books, notes, or any electronic equipment (including your cellphone, even if you just want to use it as a clock).
- You have max. 2 hours to work on the questions. If you finish early, you may hand in your work and leave, except for the first half hour of the exam. When you hand in your work, have your student ID ready for inspection.
- The exam contains 9 problems printed on 10 pages (including this one). It is your responsibility to check if you have a complete printout. If you have the impression that anything is missing, let us know.

Good luck / veel succes!

Please do not write below this line

Problem 1 (max. 12 pts)		
Problem 2 (max. 12 pts)		
Problem 3 (max. 10 pts)		
Problem 4 (max. 3 pts)	-	
Problem 5 (max. 14 pts)		
Problem 6 (max. 10 pts)		
Problem 7 (max. 10 pts)		
Problem 8 (max. 18 pts)		
Problem 9 (max. 11 pts)		

\qquad
\qquad

Problem 1: Perspective projection

■ Subproblem 1.1 [6 pts]: Windowing (or viewport) transformation. Note that for all questions in this subproblem, a short answer, e.g., one phrase or sentence can be sufficient to get full credit.
The following matrix $M_{v p}$ is used in the graphics pipeline to map the orthographic projections in the canonical view volume, i.e. values in the square $[-1,1]^{2}$, to the actual $n_{x} \times n_{y}$-sized screen window:

$$
M_{v p}=\left(\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}}{2}-\frac{1}{2} \\
0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}}{2}-\frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

1. Why do we need to subtract $\frac{1}{2}$ in the last column when we do this mapping?

Answer:
2. Although we map from 2 D to 2 D , this matrix contains a 3rd row and column for the z-value. Why? (Hint: in the lecture, we had two reasons; it is sufficient to list just one of them here.)
Answer:
3. Although we map from 2D to 2D, this matrix contains a 4th row and column. How are the values in the last row called, and why do we need them here?

Answer:

■ Subproblem 1.2 [6 pts]: Multiple choice question. Mark the correct answer. No explanation required.
There is only one correct answer for each individual question.
Assume four points $\overrightarrow{p_{0}}=\left(x_{0}, y_{0}, z_{0}\right), \overrightarrow{p_{1}}=\left(x_{1}, y_{1}, z_{1}\right), \overrightarrow{p_{2}}=\left(x_{2}, y_{2}, z_{2}\right)$, and $\overrightarrow{p_{3}}=\left(x_{3}, y_{3}, z_{3}\right)$ that are all on a line that goes through our virtual camera. \vec{p}_{0} is on the near plane n of the view frustum, $\overrightarrow{p_{3}}$ is on its far plane $f . \overrightarrow{p_{1}}$ and \vec{p}_{2} are both inside the view frustum, and \vec{p}_{1} is closer to the virtual camera than \vec{p}_{2}. P is the matrix that maps a point $\vec{p}_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ in the view frustum to a corresponding point $\vec{p}_{s_{i}}=\left(x_{s_{i}}, y_{s_{i}}, z_{s_{i}}\right)$ in the orthographic view volume.

1. After applying P to $\overrightarrow{p_{0}}, \ldots \vec{p}_{3}$ the resulting x-value $x_{s_{0}}$ of $\vec{p}_{s_{0}}$ is \ldots
A. x_{0}
B. n
C. $n x_{0}$
D. x_{0} / z_{0}
E. neither of these
2. After applying P to $\overrightarrow{p_{0}}, \ldots \vec{p}_{3}$ the resulting z-value $z_{s_{3}}$ of $\vec{p}_{s_{3}}$ is \ldots
A. unchanged
B. $>z_{2}$ and $<z_{3}$
C. $>z_{3}$
D. neither of these
3. After applying P to $\overrightarrow{p_{0}}, \ldots \vec{p}_{3}$ the resulting z-value $z_{s_{2}}$ of $\vec{p}_{s_{2}}$ is \ldots
A. $>z_{s_{1}}$ and $>z_{s_{3}}$
B. $>z_{s_{1}}$ and $<z_{s_{3}}$
C. $<z_{s_{1}}$ and $<z_{s_{3}}$
D. $>z_{s_{1}}$ and $>z_{s_{3}}$
E. neither of these

Problem 2: Clipping

■ Subproblem 2.1 [4 pts]: Position of clipping in the pipeline. Complete the following text in a way that creates a correct statement: Clipping at the beginning of the graphics pipeline forces us to deal with rather complex plane equations. Clipping at the end of it can lead to incorrect results. To avoid both issues, ...
... the best position to apply clipping is after \qquad
... and right before \qquad -.

■ Subproblem 2.2 [2 pts]: Sutherland-Hodgman algorithm. When being applied for clipping arbitrary polygons, the Sutherland-Hodgman algorithm can result in degenerated polygons. Assume the rectangular clipping region illustrated below. Draw an arbitrary polygon that partly intersects with it and would not be clipped correctly by the Sutherland-Hodgman algorithm.

■ Subproblem 2.3 [6 pts]: Weiler-Atherton algorithm. Assume the graph depicted below was created using the Weiler-Atherton algorithm for clipping arbitrary polygons. Write down the resulting clipped polygons that can be extracted from this graph. Note: Make sure to list the vertices of these polygons in the correct order returned by the algorithm, so we can see if you understood how it works.

LEGEND:
P<i> Polygon vertice <i>
(<i>) Outgoing intersection <i>
|<i> Incoming intersection <i>
(c<i) Clipping region vertice <i>

Answer:

Problem 3: Culling

■ Subproblem 3.1 [4 pts]: Culling techniques. Complete the following sentences in a way that creates a correct statement by naming the correct technique for removing triangles with the respective characteristic:

1. Triangles outside of the view frustum are removed by a technique called ...
2. Triangles within the view frustum that are occluded by others are removed by a technique called ...

■ Subproblem 3.2 [6 pts]: Backface culling. Assume we have two triangles in 3D that define the following planes:

$$
f_{1}(\vec{p})=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)\left(\vec{p}-\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)\right) \quad \text { and } \quad f_{2}(\vec{p})=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)\left(\vec{p}-\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right)
$$

Now we want to place our camera at the position $\vec{e}=(1,1,1)$ and check if we have to draw them or if we can apply backface culling. For which of the two triangles (if any) will be removed with backface culling? Justify your answer.

Answer:

Problem 4: Hidden surface removal

■ [3 pts]: z-Buffer. Assume the following (simplified) case that illustrates four points from four triangles in 3D that are all mapped to the same pixel position on the 2D screen. What are the values in the z-Buffer at the indicated position if we draw the triangles in the order T_{1}, T_{2}, T_{3}, and T_{4} ?

After initialization the value in the z-Buffer is \qquad after drawing T_{1} it is \qquad after drawing T_{2} it is \qquad after drawing T_{3} it is \qquad and after drawing T_{4} it is \qquad

Problem 5: Rasterization

■ Subproblem 5.1 [3 pts]: Multiple choice question. No explanation required. There is only one correct answer. In the lecture, we used the following definition to specify the bounding box of a polygon in 2 D that is defined by n vertices $\left(x_{i}, y_{i}\right)$ with $i=1, \ldots n$:

$$
\overrightarrow{b_{0}}=\left(\min \left\{x_{i}\right\}, \min \left\{y_{i}\right\}\right) \quad \text { and } \quad \overrightarrow{b_{1}}=\left(\max \left\{x_{i}\right\}, \max \left\{y_{i}\right\}\right) \text { for } i=1, \ldots n .
$$

Yet, other options exist. Which of the following ones also specify a correct bounding box of such a polygon?
(i) ${\overrightarrow{b_{0}}}_{0}=\left(\min \left\{x_{i}\right\}, \max \left\{y_{i}\right\}\right)$ and $\overrightarrow{b_{1}}=\left(\max \left\{x_{i}\right\}, \min \left\{y_{i}\right\}\right)$ for $i=1, \ldots n$
(ii) $\overrightarrow{b_{0}}=\left(\max \left\{x_{i}\right\}, \max \left\{y_{i}\right\}\right)$ and $\overrightarrow{b_{1}}=\left(\min \left\{x_{i}\right\}, \min \left\{y_{i}\right\}\right)$ for $i=1, \ldots n$
(iii) $\overrightarrow{b_{0}}=\left(\max \left\{x_{i}\right\}, \min \left\{y_{i}\right\}\right)$ and $\overrightarrow{b_{1}}=\left(\min \left\{x_{i}\right\}, \max \left\{y_{i}\right\}\right)$ for $i=1, \ldots n$
A. none
B. only (i)
C. only (ii)
D. only (iii)
E. only (i),(ii)
F. only (i),(iii)
G. only (ii),(iii)
H. all

■ Subproblem 5.2 [2 pts]: Scanline algorithm. Assume the edge of a 2D triangle that defines the following line given in slope-intercept form:

$$
y=\frac{7}{2} x-\frac{5}{2} .
$$

Now we want to rasterize this triangle using the scanline algorithm. Calculate the value Δ_{x} that specifies the increase of the x-coordinate along the line when we move from one scanline position to the next.

Answer:

■ Subproblem 5.3 [9 pts]: Edge Table and Active Edge Table. When implementing the scanline algorithm for rasterizing polygons, we commonly use the two data structures Edge Table and Active Edge Table.

1. Assume the following entry in an Edge Table: $2:\left(3,8, \frac{1}{2}\right)$.

What is the start point and what is the end point of the line segment represented by this entry?
The start point is \qquad
The end point is \qquad
2. Assume the following entry in an Active Edge Table: $6:\left(3,10, \frac{1}{4}\right)$.

Further assume that we started scanning this edge at scanline number 2.
What is the start point and what is the end point of the line segment represented by this entry?
The start point is \qquad
The end point is \qquad

Problem 6: Shading

■ Subproblem 6.1 [4 pts]: Blinn-Phong shading. Instead of a reflection vector as in ordinary Phong shading, the Blinn-Phong model uses a halfway vector \vec{h} to calculate glossy reflection.

1. How is this halfway vector defined? A short verbal description (1 sentence or phrase) can be sufficient to get full credit; no formulas need to be given here.

Answer:
2. What is the major advantage of using the halfway vector instead of the reflection vector? A short verbal description (1 sentence or phrase) can be sufficient to get full credit; no formulas need to be given here.

Answer:

■ Subproblem 6.2 [6 pts]: Radiosity (multiple choice questions). Mark the correct answer. No explanation required. There is only one correct answer for each individual question.

1. Which of the following characteristics is not modelled via form factors?
A. the distance r between two patches A_{i} and A_{j}
B. the relative orientation of two patches A_{i} and A_{j} towards each other
C. the reflectivity ρ_{i} of the patch A_{i}
D. the shape of the two patches A_{i} and A_{j}
2. The number of form factors is ..
A. ... linear in the number of patches, because we can calculate them with a linear equation system.
B. ... quadratic in the number of patches, because to calculate the form factor for one patch, we have to consider all other patches.
C. ...cubic in the number of patches, because the Nusselt Analog says that we can model them via a hemisphere.
D. ... to the power of four in the number of patches, because they are symmetric, so we have to calculate them twice.
3. Progressive refinement is ..
A. a method to iteratively approximate the radiosity B_{i}.
B. ... a method that approximates form factors via a hemisphere
C. ... a method that approximates form factors via a hemicube.
D. ... a method to create an adaptive subdivision of a scene into patches.
E. ... none of the above.

Problem 7: Shadows

■ Subproblem 7.1 [6 pts]: Shadow maps. Assume the situation illustrated below with a scene represented in camera coordinates with respect to a virtual camera \vec{e}_{c} and a light source at position \vec{e}_{l} with a related depth buffer. The transformation from camera coordinates to "light coordinates" can be done via a transformation matrix

$$
T_{C L}=\left(\begin{array}{cccc}
1 & 0 & 3 & 3 \\
2 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Notice that it is not clear from the image if objects are blocking the light between \vec{e}_{l} and the gray cube or not. In both cases, we are looking in the positive z-direction.
Consider the point $\vec{p}=(1,2,1)$ in camera coordinates. For this point, the corresponding value in the depth buffer of the light source is $z_{l}=2$. Do we draw \vec{p} in the light or in the shadow? Illustrate how you got your answer.

Answer:

Subproblem 7.2 [4 pts]: Multiple choice questions. Mark the correct answer. No explanation required.
There is only one correct answer for each individual question.

1. Which of the following problems with shadow volumes is solved by using a depth-fail approach instead of a depth-pass approach?
A. Precision problems at the clipping planes.
B. Divisions by zero for shadow volumes parallel to the coordinate axes.
C. Miscalculations in the counter because the view point lies inside of a shadow volume
D. Double blending in case of overlapping shadow volumes
E. All of the above
F. None of the above
2. Which of the following problems with fake shadows is not solved by using a stencil buffer?
A. Projected shadows have the same depth as shadow receivers.
B. Shadows may stick out beyond shadow receivers.
C. Multiple occluders may give rise to double blending.
D. The stencil buffer solves all of these problems.

Problem 8: Ray tracing

■ Subproblem 8.1 [8 pts]: Ray calculation.

Assume we want to do ray tracing from the position of a virtual camera given by the vector \vec{e} in world coordinates. Further assume that we have specified a camera coordinate system around \vec{e} with base vectors \vec{u}, \vec{v}, and $\overrightarrow{-w}$, where $\overrightarrow{-w}$ is the vector pointing at the screen. The distance between the screen and our virtual camera is d. Hence, a point on the screen can be expressed as $\vec{s}_{c a m}=u \vec{u}+v \vec{v}-d \vec{w}$.

1. Now we want to create a line that can be used as ray when calculating perspective views of our scene.
(a) What would be the support vector of such a line?

Answer:
(b) What would be the direction vector of such a line?

Answer:
2. Now we want to create a line for calculating parallel (or orthographic) views of our scene.
(a) What would be the support vector of such a line?

Answer:
(b) What would be the direction vector of such a line?

Answer:

■ Subproblem 8.2 [5 pts]: Instancing.

The image to the right illustrates a rotated ellipse that was created by multiplying the depicted circle with the transformation matrix T. T realizes a uniform scaling by the factor of 2 in x-direction followed by a counterclockwise rotation of 45° about the origin. Calculate the intersection points \vec{p}_{1} and \vec{p}_{2} of the ray $\vec{r}(t)$ going through the ellipse. The transformation matrix T is

$$
T=\left(\begin{array}{cc}
\sqrt{2} & -\frac{\sqrt{2}}{2} \\
\sqrt{2} & \frac{\sqrt{2}}{2}
\end{array}\right)
$$

(Hint: looking at the image can save a lot of calculations)

Answer:

■ Subproblem 8.3 [5 pts]: Constructive Solid Geometry (CSG). The two images to the left below illustrate how a more complex object can be created from a circle C and a rotated square S using Constructive Solid Geometry.

1. Write down what kind of set operation we have to apply to the circle C and the square S in order to create the gray shape illustrated in the second image.

Set operation:
2. To calculate the intersection points of the gray shape in the second image with the depicted ray \vec{r} (i.e. the line $y=2$), we need to specify the intervals representing the intersections between this ray and the original objects, i.e. the circle C and square S. What are these?

Intersection interval for the circle $C: \quad I_{C}=$ \qquad

Intersection interval for the square $S: \quad I_{S}=$ \qquad
3. What kind of set operation do we have to apply to these two intersection intervals and what is the result to this operation? Write down the operation and the resulting interval(s).

Set operation:

Resulting interval(s):
4. We can also use CSG to easily verify if a ray intersects with a bounding box. The image to the right illustrates the intersections of a ray with the four borders of a bounding box in 2D. Using this terminology, write down what kind of intervals we have to compare to check if the ray and the bounding box intersect or not.

Intervals:
5. Because we just want to know if the ray and the bounding box intersect, but we are not interested in the actual intersection points, we don't have to calculate them. Instead, we just have to check if the intersection of these two intervals is empty or not. What conditions are fulfilled if the ray does not intersect with the box?

Conditions: \qquad

Problem 9: Methods for faster ray tracing

■ Subproblem 9.1 [5 pts]: Hierarchical bounding boxes. The image to the left below illustrates a distribution of a 2D space into hierarchical bounding boxes. The one on the right shows a related tree representation. We want to use this tree to speed up our ray intersection tests. Cross out all nodes and leaves in the tree that represent bounding boxes and objects, respectively, that we do not have to check for intersection with the ray shown in the image (which only intersects with the objects in bounding boxes C4 and C8).

How many false positives do we have in the above example?
\qquad false positives.

■ Subproblem 9.2 [6 pts]: Space partitioning approaches.

Below are two images of the same 2D space containing 32 objects (= black dots).

For the left one:
Use the Octree approach to subdivide the space in cells. In the end, each cell should contain maximum two objects.

For the right one:
Use the BSP tree approach to subdivide the space in cells. In the end, each cell should contain maximum two objects. Start partitioning the space with a vertical split.

