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Problem 1: Perspective projection

Subproblem 1.1 [6 pts]: Windowing (or viewport) transformation. Note that for all questions in this subprob-
lem, a short answer, e.g., one phrase or sentence can be sufficient to get full credit.
The following matrix Mvp is used in the graphics pipeline to map the orthographic projections in the canonical view
volume, i.e. values in the square [−1,1]2, to the actual nx×ny-sized screen window:

Mvp =


nx
2 0 0 nx

2 −
1
2

0 ny
2 0 ny

2 −
1
2

0 0 1 0
0 0 0 1

 .

1. Why do we need to subtract 1
2 in the last column when we do this mapping?

Answer:

2. Although we map from 2D to 2D, this matrix contains a 3rd row and column for the z−value. Why?
(Hint: in the lecture, we had two reasons; it is sufficient to list just one of them here.)

Answer:

3. Although we map from 2D to 2D, this matrix contains a 4th row and column. How are the values in the last
row called, and why do we need them here?

Answer:

Subproblem 1.2 [6 pts]: Multiple choice question. Mark the correct answer. No explanation required.
There is only one correct answer for each individual question.
Assume four points ~p0 = (x0,y0,z0), ~p1 = (x1,y1,z1), ~p2 = (x2,y2,z2), and ~p3 = (x3,y3,z3) that are all on a line
that goes through our virtual camera. ~p0 is on the near plane n of the view frustum, ~p3 is on its far plane f . ~p1 and
~p2 are both inside the view frustum, and ~p1 is closer to the virtual camera than ~p2. P is the matrix that maps a point
~pi = (xi,yi,zi) in the view frustum to a corresponding point ~psi = (xsi ,ysi ,zsi) in the orthographic view volume.

1. After applying P to ~p0, . . . ~p3 the resulting x−value xs0 of ~ps0 is . . .

A. x0 B. n C. nx0 D. x0/z0 E. neither of these

2. After applying P to ~p0, . . . ~p3 the resulting z−value zs3 of ~ps3 is . . .

A. unchanged B. > z2 and < z3 C. > z3 D. neither of these

3. After applying P to ~p0, . . . ~p3 the resulting z−value zs2 of ~ps2 is . . .

A. > zs1 and > zs3 B. > zs1 and < zs3 C. < zs1 and < zs3 D. > zs1 and > zs3 E. neither of these
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Problem 2: Clipping

Subproblem 2.1 [4 pts]: Position of clipping in the pipeline. Complete the following text in a way that creates
a correct statement: Clipping at the beginning of the graphics pipeline forces us to deal with rather complex plane
equations. Clipping at the end of it can lead to incorrect results. To avoid both issues, . . .

. . . the best position to apply clipping is after

. . . and right before .

Subproblem 2.2 [2 pts]: Sutherland-Hodgman algorithm. When being applied for clipping arbitrary polygons,
the Sutherland-Hodgman algorithm can result in degenerated polygons. Assume the rectangular clipping region
illustrated below. Draw an arbitrary polygon that partly intersects with it and would not be clipped correctly by the
Sutherland-Hodgman algorithm.

Subproblem 2.3 [6 pts]: Weiler-Atherton algorithm. Assume the graph depicted below was created using
the Weiler-Atherton algorithm for clipping arbitrary polygons. Write down the resulting clipped polygons that can be
extracted from this graph. Note: Make sure to list the vertices of these polygons in the correct order returned by the
algorithm, so we can see if you understood how it works.

Answer:
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Problem 3: Culling

Subproblem 3.1 [4 pts]: Culling techniques. Complete the following sentences in a way that creates a correct
statement by naming the correct technique for removing triangles with the respective characteristic:

1. Triangles outside of the view frustum are removed by a technique called . . .

2. Triangles within the view frustum that are occluded by others are removed by a technique called . . .

Subproblem 3.2 [6 pts]: Backface culling. Assume we have two triangles in 3D that define the following planes:

f1(~p) =

1
2
1

(~p−

2
2
2

) and f2(~p) =

2
2
1

(~p−

0
0
1

)

Now we want to place our camera at the position~e = (1,1,1) and check if we have to draw them or if we can apply
backface culling. For which of the two triangles (if any) will be removed with backface culling? Justify your answer.

Answer:

Problem 4: Hidden surface removal

[3 pts]: z-Buffer. Assume the following (simplified) case that illustrates four points from four triangles in 3D that
are all mapped to the same pixel position on the 2D screen. What are the values in the z-Buffer at the indicated
position if we draw the triangles in the order T1,T2,T3, and T4?

After initialization the value in the z-Buffer is , after drawing T1 it is

after drawing T2 it is , after drawing T3 it is , and after drawing T4 it is .
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Problem 5: Rasterization

Subproblem 5.1 [3 pts]: Multiple choice question. No explanation required. There is only one correct answer.

In the lecture, we used the following definition to specify the bounding box of a polygon in 2D that is defined by n
vertices (xi,yi) with i = 1, . . .n:

~b0 = (min{xi},min{yi}) and ~b1 = (max{xi},max{yi}) for i = 1, . . .n.

Yet, other options exist. Which of the following ones also specify a correct bounding box of such a polygon?

(i) ~b0 = (min{xi},max{yi}) and ~b1 = (max{xi},min{yi}) for i = 1, . . .n
(ii) ~b0 = (max{xi},max{yi}) and ~b1 = (min{xi},min{yi}) for i = 1, . . .n
(iii) ~b0 = (max{xi},min{yi}) and ~b1 = (min{xi},max{yi}) for i = 1, . . .n

A. none B. only (i) C. only (ii) D. only (iii) E. only (i),(ii) F. only (i),(iii) G. only (ii),(iii) H. all

Subproblem 5.2 [2 pts]: Scanline algorithm. Assume the edge of a 2D triangle that defines the following line
given in slope-intercept form:

y =
7
2

x− 5
2
.

Now we want to rasterize this triangle using the scanline algorithm. Calculate the value ∆x that specifies the increase
of the x−coordinate along the line when we move from one scanline position to the next.

Answer:

Subproblem 5.3 [9 pts]: Edge Table and Active Edge Table. When implementing the scanline algorithm for
rasterizing polygons, we commonly use the two data structures Edge Table and Active Edge Table.

1. Assume the following entry in an Edge Table: 2 : (3,8, 1
2 ).

What is the start point and what is the end point of the line segment represented by this entry?

The start point is

The end point is

2. Assume the following entry in an Active Edge Table: 6 : (3,10, 1
4 ).

Further assume that we started scanning this edge at scanline number 2.

What is the start point and what is the end point of the line segment represented by this entry?

The start point is

The end point is
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Problem 6: Shading

Subproblem 6.1 [4 pts]: Blinn-Phong shading. Instead of a reflection vector as in ordinary Phong shading,
the Blinn-Phong model uses a halfway vector ~h to calculate glossy reflection.

1. How is this halfway vector defined? A short verbal description (1 sentence or phrase) can be sufficient to get
full credit; no formulas need to be given here.

Answer:

2. What is the major advantage of using the halfway vector instead of the reflection vector? A short verbal
description (1 sentence or phrase) can be sufficient to get full credit; no formulas need to be given here.

Answer:

Subproblem 6.2 [6 pts]: Radiosity (multiple choice questions). Mark the correct answer. No explanation
required. There is only one correct answer for each individual question.

1. Which of the following characteristics is not modelled via form factors?

A. the distance r between two patches Ai and A j

B. the relative orientation of two patches Ai and A j towards each other

C. the reflectivity ρi of the patch Ai

D. the shape of the two patches Ai and A j

2. The number of form factors is . . .

A. . . . linear in the number of patches,
because we can calculate them with a linear equation system.

B. . . . quadratic in the number of patches,
because to calculate the form factor for one patch, we have to consider all other patches.

C. . . . cubic in the number of patches,
because the Nusselt Analog says that we can model them via a hemisphere.

D. . . . to the power of four in the number of patches,
because they are symmetric, so we have to calculate them twice.

3. Progressive refinement is . . .

A. . . . a method to iteratively approximate the radiosity Bi.

B. . . . a method that approximates form factors via a hemisphere

C. . . . a method that approximates form factors via a hemicube.

D. . . . a method to create an adaptive subdivision of a scene into patches.

E. . . . none of the above.
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Problem 7: Shadows

Subproblem 7.1 [6 pts]: Shadow maps. Assume the situation illustrated below with a scene represented in
camera coordinates with respect to a virtual camera ~ec and a light source at position ~el with a related depth buffer.
The transformation from camera coordinates to “light coordinates” can be done via a transformation matrix

TCL =


1 0 3 3
2 1 1 1
0 1 1 0
0 0 0 1

 .

Notice that it is not clear from the image if objects are blocking the light between ~el and the gray cube or not. In both
cases, we are looking in the positive z−direction.
Consider the point ~p = (1,2,1) in camera coordinates. For this point, the corresponding value in the depth buffer of
the light source is zl = 2. Do we draw ~p in the light or in the shadow? Illustrate how you got your answer.

Answer:

Subproblem 7.2 [4 pts]: Multiple choice questions. Mark the correct answer. No explanation required.
There is only one correct answer for each individual question.

1. Which of the following problems with shadow volumes is solved by using a depth-fail approach instead of a
depth-pass approach?

A. Precision problems at the clipping planes.

B. Divisions by zero for shadow volumes parallel to the coordinate axes.

C. Miscalculations in the counter because the view point lies inside of a shadow volume

D. Double blending in case of overlapping shadow volumes

E. All of the above

F. None of the above

2. Which of the following problems with fake shadows is not solved by using a stencil buffer?

A. Projected shadows have the same depth as shadow receivers.

B. Shadows may stick out beyond shadow receivers.

C. Multiple occluders may give rise to double blending.

D. The stencil buffer solves all of these problems.
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Problem 8: Ray tracing

Subproblem 8.1 [8 pts]: Ray calculation.

Assume we want to do ray tracing from the position of a virtual camera given by the vector ~e in world coordinates.
Further assume that we have specified a camera coordinate system around~e with base vectors~u,~v, and ~−w, where
~−w is the vector pointing at the screen. The distance between the screen and our virtual camera is d. Hence, a

point on the screen can be expressed as~scam = u~u+ v~v−d~w.

1. Now we want to create a line that can be used as ray when calculating perspective views of our scene.

(a) What would be the support vector of such a line?
Answer:

(b) What would be the direction vector of such a line?
Answer:

2. Now we want to create a line for calculating parallel (or orthographic) views of our scene.

(a) What would be the support vector of such a line?
Answer:

(b) What would be the direction vector of such a line?
Answer:

Subproblem 8.2 [5 pts]: Instancing.

The image to the right illustrates a rotated ellipse that
was created by multiplying the depicted circle with the
transformation matrix T . T realizes a uniform scaling by
the factor of 2 in x−direction followed by a counterclock-
wise rotation of 45◦ about the origin. Calculate the in-
tersection points ~p1 and ~p2 of the ray~r(t) going through
the ellipse. The transformation matrix T is

T =

(√
2 −

√
2

2√
2

√
2

2

)
.

(Hint: looking at the image can save a lot of calculations)

Answer:
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Subproblem 8.3 [5 pts]: Constructive Solid Geometry (CSG). The two images to the left below illustrate how
a more complex object can be created from a circle C and a rotated square S using Constructive Solid Geometry.

1. Write down what kind of set operation we have to apply to the circle C and the square S in order to create the
gray shape illustrated in the second image.

Set operation:

2. To calculate the intersection points of the gray shape in the second image with the depicted ray~r (i.e. the
line y = 2), we need to specify the intervals representing the intersections between this ray and the original
objects, i.e. the circle C and square S. What are these?

Intersection interval for the circle C: IC =

Intersection interval for the square S: IS =

3. What kind of set operation do we have to apply to these two intersection intervals and what is the result to
this operation? Write down the operation and the resulting interval(s).

Set operation:

Resulting interval(s):

4. We can also use CSG to easily verify if a ray intersects with a bounding box. The image to the right illustrates
the intersections of a ray with the four borders of a bounding box in 2D. Using this terminology, write down
what kind of intervals we have to compare to check if the ray and the bounding box intersect or not.

Intervals:

5. Because we just want to know if the ray and the bounding box intersect, but we are not interested in the actual
intersection points, we don’t have to calculate them. Instead, we just have to check if the intersection of these
two intervals is empty or not. What conditions are fulfilled if the ray does not intersect with the box?

Conditions:
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Problem 9: Methods for faster ray tracing

Subproblem 9.1 [5 pts]: Hierarchical bounding boxes. The image to the left below illustrates a distribution of
a 2D space into hierarchical bounding boxes. The one on the right shows a related tree representation. We want
to use this tree to speed up our ray intersection tests. Cross out all nodes and leaves in the tree that represent
bounding boxes and objects, respectively, that we do not have to check for intersection with the ray shown in the
image (which only intersects with the objects in bounding boxes C4 and C8).

How many false positives do we have in the above example?

There are false positives.

Subproblem 9.2 [6 pts]: Space partitioning approaches.
Below are two images of the same 2D space containing 32 objects (= black dots).

For the left one:
Use the Octree approach to subdivide the space in cells.
In the end, each cell should contain maximum two ob-
jects.

For the right one:
Use the BSP tree approach to subdivide the space in
cells. In the end, each cell should contain maximum two
objects. Start partitioning the space with a vertical split.
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